Open Access
MATEC Web Conf.
Volume 361, 2022
Concrete Solutions 2022 – 8th International Conference on Concrete Repair, Durability & Technology
Article Number 06002
Number of page(s) 6
Section Theme 6 - Durability Performance of Concrete
Published online 30 June 2022
  1. M. Balonis, B. Lothenbach, G. Le Saout, F.P. Glasser, Impact of chloride on the mineralogy of hydrated portland cement systems, Cem Concr Res. 40 (2010) 1009–1022. [CrossRef] [Google Scholar]
  2. M.V.A. Florea, H.J.H. Brouwers, Chloride binding related to hydration products: Part I: Ordinary Portland Cement, Cem Concr Res. 42 (2012) 282–290. [CrossRef] [Google Scholar]
  3. F. Althoey, M. Balapour, Y. Farnam, Reducing detrimental sulfate-based phase formation in concrete exposed to sodium chloride using supplementary cementitious materials, J Build Eng. 45 (2022) 103639. [CrossRef] [Google Scholar]
  4. Q. Zeng, T. Fen-Chong, K. Li, Freezing behavior of cement pastes saturated with NaCl solution, Constr Build Mater. 59 (2014) 99–110. [CrossRef] [Google Scholar]
  5. X. Shi, L. Fay, M.M. Peterson, and Z. Yang, Freeze–thaw damage and chemical change of a portland cement concrete in the presence of diluted deicers, Mater Struct. 43 (2010) 933–946. [CrossRef] [Google Scholar]
  6. L. Sutter, K. Peterson, S. Touton, T. Van Dam, D. Johnston, Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution, Cem Concr Res. 36 (2006) 1533–1541. [CrossRef] [Google Scholar]
  7. C. Qiao, P. Suraneni, J. Weiss, Damage in cement pastes exposed to NaCl solutions, Constr Build Mater. 171 (2018) 120–127. [CrossRef] [Google Scholar]
  8. K. Wang, D.E. Nelsen, W.A. Nixon, Damaging effects of deicing chemicals on concrete materials, Cem Concr Compos. 28 (2006) 173–188. [CrossRef] [Google Scholar]
  9. S. Catianud, Durabilite a long terme de materiaux cimentaires, avec ou sans fillers calcaires, en contact avec des solutions salmes [Long-term durability of cement materials, with or without limestone fillers in contact with salt solutions], Laval University, 2000. (UMI No. NQ65444). [Google Scholar]
  10. U.. Birnin-Yauri, F.. Glasser, Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding, Cem Concr Res. 28 (1998) 1713–1723. [CrossRef] [Google Scholar]
  11. J. Csizmadia, G. Balázs, F.D. Tamás, Chloride ion binding capacity of aluminoferrites, Cem Concr Res. 31 (2001) 577–588. [CrossRef] [Google Scholar]
  12. A.K.A. Suryavanshi, J.D.J. Scantlebury, S.S.B. Lyon, Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate, Cem Concr Res. 26 (1996) 717–727. [CrossRef] [Google Scholar]
  13. T.Q. Nguyen, Physicochemical modelling of chloride ingress into cementitious materials, Ecole des Ponts ParisTech [Engilish version], 2007. [Google Scholar]
  14. V. Baroghel-Bouny, X. Wang, M. Thiery, M. Saillio, F. Barberon, Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis, Cem Concr Res. 42 (2012) 1207–1224. [CrossRef] [Google Scholar]
  15. F.P. Glasser, A. Kindness, S.A. Stronach, Stability and solubility relationships in AFm phases, Cem Concr Res. 29 (1999) 861–866. [CrossRef] [Google Scholar]
  16. M.R. Jones, D.E. Macphee, J.A. Chudek, G. Hunter, R. Lannegrand, R. Talero, S.N. Scrimgeour, Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel’s salt, Cem Concr Res. 33 (2003) 177–182. [CrossRef] [Google Scholar]
  17. M.G. Alexander, A. Bertron, Belie, International Union of Testing and Research Laboratories for Materials and Structures., Performance of cement-based materials in aggressive aqueous environments, Springer, 2013. [CrossRef] [Google Scholar]
  18. W. Kurdowski, The protective layer and decalcification of C-S-H in the mechanism of chloride corrosion of cement paste, Cem Concr Res. 34 (2004) 1555–1559. [CrossRef] [Google Scholar]
  19. A. Guerrero, S. Goñi, V.R. Allegro, Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: Synergy of chloride and sulphate ions, J Hazard Mater. 165 (2009) 903–908. [CrossRef] [Google Scholar]
  20. G. Blunk, P. Gunkel, H. Smolczyk, On the distribution of chloride between the hardening cement paste and its pore solution, in: Proc 8th Int Congr Chem Cem, Rio de Janeiro, Brazil, 1986: pp. 85–90. [Google Scholar]
  21. J. Stark, K. Bollmann, Delayed Ettringite Formation in Concrete, Nord Concr Fed. 23 (1999) 10–23. [Google Scholar]
  22. P. Wedding, S. Diamond, Chloride Concentrations in Concrete Pore Solutions Resulting from Calcium and Sodium Chloride Admixtures, Cem Concr Aggregates. 8 (1986) 97. [CrossRef] [Google Scholar]
  23. S. Yoon, J. Ha, S. Chae, D. Kilcoyne, Y. Jun, J. Oh, P. Monteiro, Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution, Materials (Basel). 9 (2016) 401. [CrossRef] [Google Scholar]
  24. ASTM C305 – Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency, ASTM Int. (2012). [Google Scholar]
  25. Y. Farnam, D. Bentz, A. Hampton, J. Weiss, Acoustic Emission and Low Temperature Calorimetry Study of Freeze and Thaw Behavior in Cementitious Materials Exposed to NaCl Salt, Transp Res Board Rec. (2014) 1–18. [Google Scholar]
  26. F. Althoey, B. Wisner, A. Kontsos, Y. Farnam, Cementitious materials exposed to high concentration of sodium chloride solution: Formation of a deleterious chemical phase change, Constr Build Mater. 167 (2018) 543–552. [CrossRef] [Google Scholar]
  27. F. Althoey, Y. Farnam, Reducing Damage Due to Chemical Reactions in Concrete Exposed to Sodium Chloride: Quantification of a Deleterious Chemical Phase Change Formation, in: Tran-SET Annu Conf, MATEC Web Conf., San Antonio, TX, 2019. [Google Scholar]
  28. F. Althoey, Y. Farnam, The effect of using supplementary cementitious materials on damage development due to the formation of a chemical phase change in cementitious materials exposed to sodium chloride, Constr Build Mater. 210 (2019). [Google Scholar]
  29. F. Althoey, P. Stutzman, M. Steiger, Y. Farnam, Thermo-chemo-mechanical understanding of damage development in porous cementitious materials exposed to sodium chloride under thermal cycling, Cem Concr Res. 147 (2021) 106497. [CrossRef] [Google Scholar]
  30. F. Althoey, Y. Farnam, Performance of Calcium Aluminate Cementitious Materials in the Presence of Sodium Chloride, J Mater Civ Eng. 32 (2020) 1–10. [CrossRef] [Google Scholar]
  31. F. Althoey, Compressive strength reduction of cement pastes exposed to sodium chloride solutions: Secondary ettringite formation, Constr Build Mater. 299 (2021) 123965. [CrossRef] [Google Scholar]
  32. M. Ksara, R. Newkirk, S.K. Langroodi, F. Althoey, C.M. Sales, C.L. Schauer, Y. Farnam, Microbial damage mitigation strategy in cementitious materials exposed to calcium chloride, Constr Build Mater. 195 (2019). [CrossRef] [Google Scholar]
  33. Y. Farnam, H. Todak, R. Spragg, J. Weiss, Electrical response of mortar with different degrees of saturation and deicing salt solutions during freezing and thawing, Cem Concr Compos. 59 (2015) 49–59. [CrossRef] [Google Scholar]
  34. E. Ali, F. Althoey, Numerical Investigation on Blast Response of Cold-Formed Steel Framing Protected with Functionally Graded Composite Material, Buildings. 12 (2022). [Google Scholar]
  35. E. Ali, F. Althoey, A Simplified Stress Analysis of Functionally Graded Beams and Influence of Material Function on Deflection, Appl Sci. 11 (2021) 11747. [CrossRef] [Google Scholar]
  36. N. Tsui, R.J. Flatt, G.W. Scherer, Crystallization damage by sodium sulfate, J Cult Herit. 4 (2003) 109–115. [CrossRef] [Google Scholar]
  37. C. Price, The use of sodium sulphate crystallisation test for determining the weathering resistance of untreated stone, in: Altération Prot Des Monum En Pierre Colloq Int Paris, Du 5 Au 9 Juin 1978 = Deterior Prot Stone Monum Int Symp Paris, June 5th-9th 1978 Vol 3 Sess 36 Paris Cent d’études Du Batîme, 1978. [Google Scholar]
  38. R.J. Flatt, Salt damage in porous materials: how high supersaturations are generated, J Cryst Growth. 242 (2002) 435–454. [CrossRef] [Google Scholar]
  39. L. Molina, On predicting the influence of curing conditions on the degree of hydration, Swedish Cement and Concrete Research Institute, Stockholm, 1992. [Google Scholar]
  40. Y. Elakneswaran, T. Nawa, K. Kurumisawa, Electrokinetic potential of hydrated cement in relation to adsorption of chlorides, Cem Concr Res. 39 (2009) 340–344. [CrossRef] [Google Scholar]
  41. F. Althoey, Y. Farnam, The Effect of Temperature Variations on the Chemical Stability of Cementitious Materials Exposed to NaCl Solution, in: 9th Adv Cem Mater Charact Process Model Sens, 2018. 10.13140/RG.2.2.30302.48961. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.