Open Access
Issue
MATEC Web Conf.
Volume 358, 2022
3rd International Symposium on Mechanics, Structures and Materials Science (MSMS 2022)
Article Number 01058
Number of page(s) 4
DOI https://doi.org/10.1051/matecconf/202235801058
Published online 19 May 2022
  1. Lars Erik Walle, Davide Ragazzon, Anne Borg, et al, Photoemission studies of water dissociation on rutile TiO2(110): Aspects on experimental procedures and the influence of steps Lars, Applied Surface Science, 303 (2014) 245–249. [CrossRef] [Google Scholar]
  2. Fujishima A, Honda K. Electorchemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38. [CrossRef] [PubMed] [Google Scholar]
  3. Tan S, Feng H, Ji Y, et al. Observation of Photocatalytic Dissociation of Water on Terminal Ti Sites of TiO2(110) Surface. J. Am. Chem. Soc, 134 (2012) 9978–9985. [CrossRef] [Google Scholar]
  4. Cheng J, Sulpizi M, VandeVondele J, et al. Hole Localization and Thermochemistry of Oxidative Dehydrogenation of A queous Rutile TiO2(110). ChemCatChem, 4 (2012) 636–640. [CrossRef] [Google Scholar]
  5. Cheng J, Vande Vondele J, Sprik M, et al. Identifying Trapped Electronic Holes at the Aqueous TiO2 Interface. J. Phys. Chem. C, 118 (2014) 5437–5444. [CrossRef] [Google Scholar]
  6. Nakamura R, Nakato Y. Primary Intermediates of Oxygen Photoevolution Reaction on TiO2 (Rutile) Particles, Revealed by in Situ FTIR Absorption and Photoluminescence Measurements. J. Am. Chem. Soc, 126 (2004) 1290–1298. [Google Scholar]
  7. Imanishi A, Okamura T, Ohashi N, et al. Mechanism of Water Photooxidation Reaction at Atomically Flat TiO2(Rutile) (110) and (100) Surfaces: Dependence on Solution Ph. J. Am. Chem. Soc, 129 (2007) 11569–11578. [CrossRef] [Google Scholar]
  8. Waegele M M, Chen X, Herlihy D, et al. How Surface Potential Determines the Kinetics of the First Hole Transfer of Photocatalytic Water Oxidation. J. Am. Chem. Soc, 136 (2014)10632–10639. [CrossRef] [Google Scholar]
  9. Cheng J, Liu X, Kattirtzi J A, VandeVondele J, et al. Aligning Electronic and Protonic Energy Levels of Proton-Coupled Electron Transfer in Water Oxidation on Aqueous TiO2. Angew. Chem. Int. Ed, 53 (2014)12046–12050. [CrossRef] [Google Scholar]
  10. Whitesides GM, Crabtree GW. Don’t Forget Long- Term Fundamental Research in Energy. Science, 315 (2007)796–798. [CrossRef] [Google Scholar]
  11. Vittadini A, Selloni F, et al. Structure and Energetics of Water Adsorbed at TiO2 Anatase (101)and (001)Surfaces. Phys. Rev. Lett, 81(1998) 954–956. [Google Scholar]
  12. Schaub R, Thostrup N, et al. Oxygen Vacancies as Active Sites for Water Dissociation on Rutile TiO2(110). Phys. Rev. Lett, 87 (2001) 266104–266106. [CrossRef] [Google Scholar]
  13. Philip JD Lindan, Harrison NM. Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface. Phys. Rev. Lett, 80 (1998) 762–765. [CrossRef] [Google Scholar]
  14. Philip JD Lindan, Changjun Zhang. Exothermic water dissociation on the rutile TiO2(110)surface. Phys. Rev. Lett, 72 (2005) 0754391–0754397. [Google Scholar]
  15. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. PHY S I CAL REV I EW LETTERS, 77 (1996) 3865–3868. [Google Scholar]
  16. GRIMME, S., Semiempirical Gga-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem, 27 (2006)1787-1799. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.