Open Access
Issue
MATEC Web Conf.
Volume 358, 2022
3rd International Symposium on Mechanics, Structures and Materials Science (MSMS 2022)
Article Number 01059
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202235801059
Published online 19 May 2022
  1. Shin W S, Chang K H, Muzaffer S. Fatigue analysis of cruciform welded joint with weld penetration defects, J. Engineering Failure Analysis, 2021, 120:105111. [CrossRef] [Google Scholar]
  2. Chang K H, Lee C H, Jang G C, et al. OS4-7-4 Weld geometry effect on the fatigue strength of non-load carrying fillet welded cruciform joints, J. The Japan Society of Mechanical Engineers, 2017. [Google Scholar]
  3. Kinoshita K, Arakawa S. Influence of incomplete penetration size on fatigue crack initiation point of load-carrying cruciform welded joints, J. Kou kouzou rombunshuu, 2011, 16:65–70. [Google Scholar]
  4. Ngoula D T, Beier H T, Vormwald M. Fatigue crack growth in cruciform welded joints: Influence of residual stresses and of the weld toe geometry, J. International Journal of Fatigue, 2016, 101(PT.2):253–262. [Google Scholar]
  5. Liao Xiaowei, Wang Yuanqing, et al. Fatigue performance of cross-shaped non-force-transmitting fillet weld joints in low temperature environment, J. Journal of Zhejiang University: Engineering Science, 2020, 54(10):9. [Google Scholar]
  6. Andud D, Saidin S, Manurung Y. Fatigue Life Behaviour of Transverse Fillet Weld and Transverse Fillet on Weld of the HSLA S460G2+M Followed by HFMI/PIT, J. Applied Mechanics and Materials, 2020, 899:126–134. [CrossRef] [Google Scholar]
  7. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration. GB/T 24176—2009 Metal Materials Fatigue Test Data Statistical Scheme and Analysis Method, S. Beijing: China Standard Press, 2016. [Google Scholar]
  8. Peng Y, Dai Z, Chen J, et al. Fatigue behaviour of load-carrying fillet-welded cruciform joints of austenitic stainless steel, J. Journal of Constructional Steel Research, 2021, 184(8):106798. [CrossRef] [Google Scholar]
  9. Zhao H, Li X, Seng T L. Fracture analysis of loadcarrying cruciform welded joint with a surface crack at weld toe, J. Engineering Fracture Mechanics, 2020, 241. [Google Scholar]
  10. Hob Bac Her A F. The new IIW recommendations for fatigue assessment of welded joints and components- A comprehensive code recently updated, J. International Journal of Fatigue, 2009, 31(1):50–58.4+161–162. [CrossRef] [Google Scholar]
  11. Zhang M, Gou G, Hang Z, et al. Effect of stress concentration on the fatigue strength of A7N01S-T5 welded joints, J. International Journal of Modern Physics B, 2017, 31(16-19):1744047. [CrossRef] [Google Scholar]
  12. Ayg M. Fatigue evaluation of welded details-using the finite element method, J. Chalmers University of Technology, 2013. [Google Scholar]
  13. Xz A, Sx B, Yz A, et al. Fatigue Reliability Analysis of Metro Bogie Frame Based on Effective Notch Stress Method. 2021. [Google Scholar]
  14. H. Neuber. Über die berücksichtigung der spannungskonzentration bei festigkeitsberechnungen, Konstruktion, 20 (7) (1968), pp. 245–251. [Google Scholar]
  15. Wang Q, Ji B, Fu Z, et al. Evaluation of crack propagation and fatigue strength of rib-to-deck welds based on effective notch stress method, J. Construction and Building Materials, 2019, 201(MAR.20):51–61. [CrossRef] [Google Scholar]
  16. Boni L, Lanciotti A, Polese C. “Size effect” in the fatigue behavior of Friction Stir Welded plates, J. International Journal of Fatigue, 2015, 80(nov.):238–245. [CrossRef] [Google Scholar]
  17. Yagi J, Tomita Y, Machida S, et al. Thickness effect criterion for fatigue strength evaluation of welded steel structures, J. Journal of the Japan Society of Naval Architects & Ocean Engineers, 2009, 115(1):58–65. [Google Scholar]
  18. Shiratsuchi T, Osawa N. Investigation of thickness and bead profile effects on fatigue strength of welded joints based on relative stress gradient, J. International Journal of Fatigue, 2020, 134:105520. [CrossRef] [Google Scholar]
  19. Tetsuo, Okada, Masashi, et al. An analytical and experimental study on the thickness effect of fatigue strength in large-scale-welded models, J. Welding in the World Journal of the International Institute of Welding Journal of the International Institute of Welding, 2014. [Google Scholar]
  20. Toshiaki I, Toshio N, Yoshihisa T, et al. Thickness Effect on Fatigue Strength of Welded Joint Improved by HFMI, J. Quarterly Journal of the Japan Welding Society, 2016, 34(4):249–259. [CrossRef] [Google Scholar]
  21. Lotsberg I. Assessment of the Size Effect in Fatigue Analysis of Butt Welds and Cruciform Joints. American Society of Mechanical Engineers, 2014. [Google Scholar]
  22. Rohani H, Dabiri M, Ahola A, et al. Re-evaluation of weld root fatigue strength for load-carrying fillet welded joints using the notch stress concept, J. International Journal of Fatigue, 2020, 144(6). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.