Open Access
Issue |
MATEC Web Conf.
Volume 357, 2022
25th Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2020)
|
|
---|---|---|
Article Number | 07005 | |
Number of page(s) | 18 | |
Section | Physical and Chemical Properties of Materials | |
DOI | https://doi.org/10.1051/matecconf/202235707005 | |
Published online | 22 June 2022 |
- J.P. Lopes Neto, J.W.B. Nascimento, J.I. Marques, C.A. da Costa nMechanical properties of grain in silos for simulation designs. Eng. Agric. 2016, 36, 573–580 (2016), [Google Scholar]
- B. Karwat, R. Machnik, J. Niedzwiedzki, M. Nogaj, P. Rubacha, E. Staficzyk Calibration of bulk material model in Discrete Element Method on example of perlite D18-DN. Eksploatacja i Niezawodnosc 2019, 21, 351–357 (2019). [CrossRef] [Google Scholar]
- M. Bembenek Research and prospects for new areas of using roller presses. Przem. Chem. 2017, 96, 1845–1847. [Google Scholar]
- V. Mannheim Empirical and scale-up modeling in stirred ball mills. Chem. Eng. Res. Des. 2011, 89, 405–409 (2011). [CrossRef] [Google Scholar]
- M. Jewiarz, K. Mudryk, K.M. Wrobel, J. Fraczek, K. Dziedzic Parameters Affecting RDF-Based Pellet Quality. Energies 2020, 13, 910, (2020). [CrossRef] [Google Scholar]
- T. Domafski, A. Sapietová, M. Sága Application of Abaqus Software for the Modeling of Surface Progressive Hardening. Procedia Engineering 2017, 177, 64–69. [CrossRef] [Google Scholar]
- P. Krawiec, L. Rózañski, D. Czarnecka-Komorowska, L. Wargula Evaluation of the Thermal Stability and Surface Characteristics of Thermoplastic Polyurethane V-Belt. Materials, 13, doi: 10.3390/ma13071502 (2020). [CrossRef] [Google Scholar]
- M. Sága, P. Kopas, M. Uhricik Modeling and Experimental Analysis of the Aluminium Alloy Fatigue Damage in the case of Bending - Torsion Loading. Procedia Engineering 2012, 48, 599–606 (2012). [CrossRef] [Google Scholar]
- M. Hryniewicz, M. Bembenek, A. Janewicz, B. Kosturkiewicz Agglomeration of finegrained materials in roll presses with asymmetrical compaction unit. Przem. Chem. 2015, 94, 2223–2226 (2015). [Google Scholar]
- A. Tomporowski, J. Flizikowski, J. Welnowski, Z. Najzarek, T. Topolifiski, W. Kruszelnicka, I. Piasecka, S. Smigiel Regeneration of rubber waste using an intelligent grinding system. Przemysl Chemiczny 2018, 97, 1659–1665 (2018). [Google Scholar]
- W. Kruszelnicka, P. Baldowska-Witos, R. Kasner, J. Flizikowski, A. Tomporowski, J. Rudnicki Evaluation of emissivity and environmental safety of biomass grinders drive. Przemysl Chemiczny 2019, 98, 1494–1498 (2019). [Google Scholar]
- J. Flizikowski, W. Kruszelnicka, M. Macko The Development of Efficient Contaminated Polymer Materials Shredding in Recycling Processes. Polymers 13, 713 (2021). [CrossRef] [Google Scholar]
- M. Macko, A. Mrozinski Work parameters research of wood pellet machine. AIP. Conference Proceedings, 2077. doi: 10.1063/1.5091899 (2019). [Google Scholar]
- M. Macko, A. Mrozinski, A. Prentki A. Simulations CAE of wood pellet machine. MATEC Web of Conferences 254, 02028 (2019). [CrossRef] [EDP Sciences] [Google Scholar]
- A. Tomporowski Stream of efficiency of rice grains multi-disc grinding. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012, 14 (2012). [Google Scholar]
- W. Kruszelnicka, R. Kasner, P. Baldowska-Witos, J. Flizikowski, A. Tomporowski The Integrated Energy Consumption Index for Energy Biomass Grinding Technology Assessment. Energies 2020, 13, 1417 (2020). [CrossRef] [Google Scholar]
- M. Macko, A. Mrozinski Computer Aided Design of Wood Pellet Machines. In: Rusiñski, E., Pietrusiak, D. (eds) Proceedings of the 14th International Scientific Conference: Computer Aided Engineering. CAE 2018, p. 454–446. Lecture Notes in Mechanical Engineering. Springer, Cham (2019). [Google Scholar]
- A. Marczuk, W. Misztal, P. Savinykh, N. Turubanov, A. Isupov, D. Zyryanov Improving Efficiency of Horizontal Ribbon Mixer by Optimizing Its Constructional and Operational Parameters. Eksploat. Niezawodn. 2019, 21, 220–225 (2019). [CrossRef] [Google Scholar]
- G. Zajac, A. Wegrzyn Analysis of work parameters changes of diesel engine powered with diesel fuel and faee blends. Eksploatacja i Niezawodnosc-Maintenance and Reliability 2008, 17–24 (2008). [Google Scholar]
- M. Macko, K. Tyszczuk, G. Smigielski, J. Flizikowski, A. Mrozinski The use of CAD applications in the design of shredders for polymers. MATEC Web Conf. 157, 02027 (2018).. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Flizikowski, M. Macko Competitive design of shredder for plastic in recycling. In Proceedings of the Tools and methods of competitive engineering, vols 1-2; Lausanne, Switzerland, pp. 1147–1148 (2004). [Google Scholar]
- M. Macko, A. Mroziñski, J. Flizikowski Design and Utility of Specialist Comminution Set-Up for Plastics and Organic Materials. American Society of Mechanical Engineers Digital Collection, pp. 397–402 (2012). [Google Scholar]
- J. Flizikowski, M. Macko The influence of design of shredder on quality of product (Conference paper) REWAS'04 - Global Symposium on Recycling, Waste Treatment and Clean Technology, 2841–2842, code 66515 (2005). [Google Scholar]
- J.B. Flizikowski, W. Kruszelnicka, A. Tomporowski, A. Mrozinski A study of operating parameters of a roller mill with a new design. AIP Conference Proceedings 2019, 2077, 020018 (2019). [CrossRef] [Google Scholar]
- K. Piotrowska, W. Kruszelnicka, P. Baldowska-Witos, R. Kasner, J. Rudnicki, A. Tomporowski, J. Flizikowski, M. Opielak Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method. Materials 2019, 12, 4177, (2019) [CrossRef] [Google Scholar]
- J.B. Flizikowski, A. Mrozinski, A. Tomporowski Active monitoring as cognitive control of grinders design.; AIP Conference proceedings: Melville, New York, 1822, p. 020006 (2017). [CrossRef] [Google Scholar]
- M. Tymoszuk, K. Mroczek, S. Kalisz, H. Kubiczek An investigation of biomass grindability. Energy, 183, 116–126 (2019). [CrossRef] [Google Scholar]
- M. Macko, Z. Szczepañski, E. Mikolajewska, J. Nowak, D. Mikolajewski Repository of 3D images for education and everyday clinical practice purposes. Bio-Algorithms and Med-Systems, 13, 2, 111–116 (2017). [CrossRef] [Google Scholar]
- M. Macko, Z. Szczepañski, D. Mikolajewski Design and manufacture of artificial organs made of polymers. 23rd Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS), 2018. Book Series: MATEC Web of Conferences, 254, (2019). [Google Scholar]
- J. Kopowski, D. Mikolajewski, M. Macko, I. Rojek Bydgostian hand exoskeleton -own concept and the biomedical factors. Bio-Algorithms and Med-Systems. doi: 10.1515/BAMS-2019-0003 (2019). [Google Scholar]
- J. Kopowski, I. Rojek, D. Mikolajewski, M. Macko 3D printed hand exoskeleton -own concept. Lecture Notes in Mechanical Engineering, pp. 298–306 (2019). [CrossRef] [Google Scholar]
- M. Macko, Z. Szczepafski, D. Mikolajewski, E. Mikolajewska, S. Listopadzki The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine. In: Rusifski, E., Pietrusiak, D. (eds) Proceedings of the 13th International Scientific Conference. RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham. (2017). [Google Scholar]
- Z. Liang, Y. Li, L. Xu, Z. Zhao Sensor for monitoring rice grain sieve losses in combine harvesters. Biosystems Engineering 147, 51–66 (2016), [CrossRef] [Google Scholar]
- J. Hlosta, L. Jezerská, J. Rozbroj, D. Zurovec, J. Necas, J. Zegzulka DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 2—Process Validation and Experimental Study. Processes 2020, 8, 184 (2020). [CrossRef] [Google Scholar]
- J. Hlosta, L. Jezerská, J. Rozbroj, D. Zurovec, J. Necas, J. Zegzulka DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 1 —Determination of the DEM Parameters and Calibration Process. Processes 2020, 8, 222 (2020). [CrossRef] [Google Scholar]
- J. Pachón-Morales, H. Do, J. Colin, F. Puel, P. Perré, D. Schott DEM modelling for flow of cohesive lignocellulosic biomass powders: Model calibration using bulk tests. Advanced Powder Technology, 30, 732–750 (2019). [CrossRef] [Google Scholar]
- Y. Zeng, F. Jia, Y. Xiao, Y. Han, X. Meng Discrete element method modelling of impact breakage of ellipsoidal agglomerate. Powder Technology. 346, 57–69 (2019). [CrossRef] [Google Scholar]
- X. Wang, J. Yi, Z. Zhou, C. Yang Optimal Speed Control for a Semi-Autogenous Mill Based on Discrete Element Method. Processes 2020, 8, 233 (2020). [CrossRef] [Google Scholar]
- A.V. Boikov, R.V. Savelev, V.A. Payor DEM Calibration Approach: design of experiment. J. Phys.: Conf. Ser. 1015, 032017 (2018), [CrossRef] [Google Scholar]
- P.A. Cundall, O.D.L. Strack A discrete numerical model for granular assemblies. Géotechnique 29, 47–65 (1979). [CrossRef] [Google Scholar]
- Z. Yan, S.K. Wilkinson, E.H. Stitt, M. Marigo Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis. Comp. Part. Mech. 2, 283–299 (2015). [CrossRef] [Google Scholar]
- L.F. Orozco, D.-H. Nguyen, J.-Y. Delenne, P. Sornay, F. Radjai Discrete-element simulations of comminution in rotating drums: Effects of grinding media. Powder Technology, 362, 157–167 (2020). [CrossRef] [Google Scholar]
- D.O. Potyondy, P.A. Cundall A bonded-particle model for rock. 41, 1329–1364 (2004). [Google Scholar]
- N. Cho, C.D. Martin, D.C. Sego A clumped particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 44, 997–1010 (2007). [CrossRef] [Google Scholar]
- Y. Tan, D. Yang, Y. Sheng Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. Journal of the European Ceramic Society, 29, 1029–1037 (2009). [CrossRef] [Google Scholar]
- D. Mas Ivars, M.E. Pierce, C. Darcel, J. Reyes-Montes, D.O. Potyondy, R. Paul Young, P.A. Cundall The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences, 48, 219244 (2011). [Google Scholar]
- P.W. Cleary, M. Prakash, M.D. Sinnott, M. Rudman, R. Das Large Scale Simulation of Industrial, Engineering and Geophysical Flows Using Particle Methods. In Particle-Based Methods: Fundamentals and Applications; Oñate, E., Owen, R. (Eds.); Computational Methods in Applied Sciences; Springer Netherlands: Dordrecht (2011). [Google Scholar]
- N.S. Weerasekara, M.S. Powell, P.W. Cleary, L.M. Tavares, M. Evertsson, R.D. Morrison, J. Quist, R.M. Carvalho The contribution of DEM to the science of comminution. Powder Technology, 248, 3–24 (2013). [CrossRef] [Google Scholar]
- G.W. Delaney, P.W. Cleary, M.D. Sinnott, R.D. Morrison, R.D. Novel Application of DEM to modelling comminution processes. IOP Conference Series: Materials Science and Engineering, 10, 012099 (2010). [CrossRef] [Google Scholar]
- H. Pourtavakoli, E.J.R. Parteli, T. Poeschel, Granular dampers: does particle shape matter? New J. Phys. 2016, 18, 073049 (2016). [CrossRef] [Google Scholar]
- Y. Lv, H. Li, X. Zhu, X.W. Liu Discrete element method simulation of random Voronoi grain-based models. Cluster Comput, 20, 335–345 (2017). [CrossRef] [Google Scholar]
- S. Fengnian, T. Kojovic Validation of a model for impact breakage incorporating particle size effect. Internationa Journal of Mineral Processing, 82, 156–163 (2007). [CrossRef] [Google Scholar]
- L.M. Tavares Optimum routes for particle breakage by impact. Powder Technology, 142, 81–91 (2004). [CrossRef] [Google Scholar]
- L.M. Tavares Analysis of particle fracture by repeated stressing as damage accumulation. Powder Technology, 190, 327–339 (2009). [CrossRef] [Google Scholar]
- C.J. Coetzee Review: Calibration of the discrete element method. Powder Technology, 310, 104–142 (2017). [CrossRef] [Google Scholar]
- C. González-Montellano, J.M. Fuentes, E. Ayuga-Téllez, F. Ayuga Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. Journal of Food Engineering, 111, 553–562 (2012). [CrossRef] [Google Scholar]
- M. Marigo, E.H. Stitt Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets. KONA Powder and Particle Journal, 32, 236–252 (2015). [CrossRef] [Google Scholar]
- Food powders: physical properties, processing, and functionality; Barbosa-Cánovas, G.V., Ed.; Food engineering series; Kluwer Acad./Plenum: New York (2005). [Google Scholar]
- A. Tomporowski, J. Flizikowski, W. Kruszelnicka A new concept of roller-plate mills. Przemysl Chemiczny 2017, 96, 1750–1755 (2017). [Google Scholar]
- W. Kruszelnicka, A. Idzikowski, K. Markowska, R. Kasner Quality Index of Multi-Disc Grinding Process of Grainy Biomass. QPI 2019 1, 503–511 (2019). [Google Scholar]
- J. Quist, C. Evertsson Framework for DEM Model Calibration and Validation. 6. [Google Scholar]
- T.A.H. Simons, R. Weiler, S. Strege, S. Bensmann, M. Schilling, A. Kwade A Ring Shear Tester as Calibration Experiment for DEM Simulations in Agitated Mixers - A Sensitivity Study. Procedia Engineering, 102, 741–748 (2015). [CrossRef] [Google Scholar]
- G.K.P. Barrios, R.M. de Carvalho, A. Kwade, L.M. Tavares Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technology, 248, 84–93 (2013). [CrossRef] [Google Scholar]
- N.V. Brilliantov, T. Poeschel Rolling friction of a viscous sphere on a hard plane. Europhys. Lett., 42, 511–516 (1998). [CrossRef] [Google Scholar]
- M. Heckel, A. Glielmo, N. Gunkelmann, T. Pöschel Can we obtain the coefficient of restitution from the sound of a bouncing ball? Phys. Rev. E, 93, 032901 (2016). [CrossRef] [Google Scholar]
- N. Gunkelmann, M. Montaine, T. Pöschel Stochastic behavior of the coefficient of normal restitution. Phys. Rev. E, 89, 022205 (2014). [CrossRef] [Google Scholar]
- M. Montaine, M. Heckel, C. Kruelle, T. Schwager, T. Pöschel Coefficient of restitution as a fluctuating quantity. Phys. Rev. E, 84, 041306 (2011). [CrossRef] [Google Scholar]
- T. Schwager, T. Pöschel Coefficient of restitution and linear-dashpot model revisited. Granular Matter, 9, 465–469 (2007). [CrossRef] [Google Scholar]
- A. McKen, S. Williams An overview of the small-scale tests available to characterise ore grindability. SGS Minerals Services (2006).. [Google Scholar]
- W. Kruszelnicka, A. Marczuk, R. Kasner, P. Baldowska-Witos, K. Piotrowska, J. Flizikowski, A. Tomporowski Mechanical and Processing Properties of Rice Grains. Sustainability, 12, 552 (2020). [CrossRef] [Google Scholar]
- P.C. Corrêa, F.S. da Silva, C. Jaren, P.C. Afonso, I. Arana Physical and mechanical properties in rice processing. Journal of Food Engineering, 79, 137–142 (2007). [CrossRef] [Google Scholar]
- J. Guowei, Q. Baijin G. Discrete Element Method Simulation of Impact-Based Measurement of Grain Mass Flow. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring; IEEE: Changsha, Hunan, China, pp. 419–422 (2011). [Google Scholar]
- D. Markauskas, R. Kacianauskas Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter, 13, 143–148 (2011). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.