Open Access
Issue
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 03063
Number of page(s) 12
Section Computing Methods and Computer Application
DOI https://doi.org/10.1051/matecconf/202235503063
Published online 12 January 2022
  1. Zhou, S. L., Nie, W., & Bai, Y. (2010). Investigation on mooring system design of a deepwater semi-submersible platform. Journal of Ship Mechanics. 14(5), 495–502. [Google Scholar]
  2. Korterayma, W., & Nakamaura, M. (1992). Drag and inertia force coefficients derived from field tests. International Journal of Offshore and Polar Engineering. 2(3), 161-167. [Google Scholar]
  3. Kim, M. H., Ran, Z. H., & Zheng, W. H. (2001). Hull/mooring coupled dynamic analysis of a truss spar in the time domain. International Journal of Offshore and Polar Engineering, 11(1), 42-54. [Google Scholar]
  4. Nakamura, M., Koterayama, W., & Kyozuka, Y. (1991). Slow drift damping due to drag forces acting on mooring lines. Ocean Engineering, 18(4), 283–296. [CrossRef] [Google Scholar]
  5. Xu, S., Wang, X., Yang, J., & Wang, L. (2019). A fuzzy rule based PID controller for dynamic positioning of vessels in variable environmental disturbances. Journal of Marine Science and Technology 25(3), 914–924. [Google Scholar]
  6. Balchen, J. G., Jenssen, N. A., & Saelid, S. (1976). Dynamic positioning using Kalman filtering and optimal control theory. In IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation (pp. 183–186), The Netherlands. [Google Scholar]
  7. Balchen, J. G., Jenssen, N. A., & Saelid, S. (1980). Dynamic positioning of floating vessels based on Kalman filtering and optimal control. In Proceedings of the 19th IEEE Conference on Decision and Control (pp. 852–864), USA. [Google Scholar]
  8. Saelid, S., Jenssen, N. A., & Balchen, J. G. (1983). Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control., IEEE Transactions on Automatic Control, 28(3), 331–339. [CrossRef] [Google Scholar]
  9. Javling, B., Balchen, J. G., & Strand, S. (1993). Modified LQG-control and quasi-dynamic optimal control for nonlinear multivariable processes. IFAC Proceedings Volumes, 26(2), 89-92. [CrossRef] [Google Scholar]
  10. Katebi, M. R., Rimble, M. J. G., & Zhang, Y. (1997). H∞ robust control design for dynamic ship positioning. IEEE Proceedings Control Theory and Applications, 144(2), 110-120. [CrossRef] [Google Scholar]
  11. Hyakudome, T., Nakamura, M., Kajiwara, H., & Kotemyama, W. (1998). H∞ Control of Slow Drift Oscillation of Moored Floating Platform with Thrusters. The Proceedings of the Eighth (1998) International Offshore and Polar Engineering Conference (pp. 338-345), Japan. [Google Scholar]
  12. Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley and Sons Published. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.