Open Access
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
Article Number 03062
Number of page(s) 12
Section Computing Methods and Computer Application
Published online 12 January 2022
  1. Wu Z and Xu Q, Survey on recent designs of compliant micro-/nano-positioning stages. Actuators, 2018;7 (1): 5. [CrossRef] [Google Scholar]
  2. Yu S., Ma J., Wu H., and Kang S., Robust precision motion control of piezoelectric actuators using fast nonsingular terminal sliding mode with time delay estimation. Measurement and Control, 2019; 52(1-2): 11-19. [CrossRef] [Google Scholar]
  3. Wang Z, Liu L, Wang Y. Stable nanomanipulation using atomic force microscopy: A virtual nanohand for a robotic nanomanipulation system. IEEE Nanotechnology Magazine, 2013; 7(4), 6-11. [CrossRef] [Google Scholar]
  4. Gozen B.A. and Ozdoganlar O.B. Design and evaluation of a mechanical nanomanufacturing system for nanomilling. Precision Engineering, 2012; 36(1): 19-30. [CrossRef] [Google Scholar]
  5. Ghosh B., Jain R.K., Majumder S., Roy S., and Mukhopadhyay S. Experimental characterizations of bimorph piezoelectric actuator for robotic assembly. JIMSS, 2017; 28(15): 2095-2109. [Google Scholar]
  6. Putra A.S., Huang S., Tan K.K., Panda S.K., and Lee T.H. Design, modeling, and control of piezoelectric actuators for intracytoplasmic sperm injection. IEEE Transactions on Control Systems Technology, 2017; 15(5): 879-890. [Google Scholar]
  7. Jiang H., Ji H., Qiu J., and Chen Y. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010; 57(5): 1200-1210. [CrossRef] [Google Scholar]
  8. Rakotondrabe M. Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Transactions on Automation Science and Engineering, 2010; 8(2): 428-431. [Google Scholar]
  9. Ms A., As B., Hysteresis compensation-based robust output feedback control for long-stroke piezoelectric actuators at high frequency. Sensors and Actuators A: Physical, 2021 [Google Scholar]
  10. K. Hergli, H. Marouani, M. Zidi, Y. Fouad, and M. Elshazly, Identification of Preisach hysteresis model parameters using genetic algorithms, Journal of King Saud University-Science, 2019; 31(4): 746-752. [CrossRef] [Google Scholar]
  11. Opreni A., Boni N., Analysis of the Nonlinear Response of Piezo-Micromirrors with the Harmonic Balance Method. Actuators, 2021; 10(2): 21-30. [CrossRef] [Google Scholar]
  12. Oh J. and Bernstein D.S., Semilinear Duhem model for rate-independent and rate-dependent hysteresis, ITAC, 2005; 50(5): 631-645. [Google Scholar]
  13. Huang L, Li Y, Tong S. Fuzzy Adaptive Output Feedback Control for MIMO Switched Nontriangular Structure Nonlinear Systems With Unknown Control Directions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(2):550-564. [CrossRef] [Google Scholar]
  14. Xie MY, Yu SD, Lin HP,Wu HT. Improved Sliding Mode Control with Time Delay Estimation for Motion Tracking of Cell Puncture Mechanism. IEEE Transactions on Circuits and Systems I, 2020. (DOI: 10.1109/TCSI.2020.2981629). [Google Scholar]
  15. Yu, S., Xie, M., Wu, H., Ma, J., Li, Y., & Gu, H. Composite proportional-integral sliding mode control with feedforward control for cell puncture mechanism with piezoelectric actuation. ISA Transactions; 2020, (DOI: 10.1016/j.isatra.2020.02.015). [Google Scholar]
  16. Yu S., Xie M., Wu H., et al., Design and control of a piezoactuated microfeed mechanism for cell injection. The International Journal of Advanced Manufacturing Technology, 2019; 105(12): 4941-4952. [CrossRef] [Google Scholar]
  17. Kamal S., Moreno J.A., Chalanga A., Bandyopadhyay B., and Fridman L.M. Continuous terminal sliding-mode controller. 2016; 69: 308-314. [Google Scholar]
  18. Asl R.M., Hagh Y.S., and Palm R. Robust control by adaptive non-singular terminal sliding mode. Engineering Applications of Artificial Intelligence, 2017; 59: 205-217. [CrossRef] [Google Scholar]
  19. Jin M., Lee J., and Ahn K.K. Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Transactions on Mechatronics, 2014; 20(2): 899-909. [Google Scholar]
  20. Lee J., Chang P.H., and Jin M. Adaptive integral sliding mode control with time-delay estimation for robot manipulators. ITIE, 2017; 64(8): 6796-6804. [Google Scholar]
  21. Levant A. Higher-order sliding modes, differentiation and output-feedback control. IJC, 2003; 76(9-10): 924-941. [Google Scholar]
  22. Zhao X., Yang H., Xia W., andWang X. Adaptive fuzzy hierarchical sliding-mode control for a class of MIMO nonlinear time-delay systems with input saturation, IEEE Transactions on Fuzzy Systems, 2016; 25(5): 1062-1077. [Google Scholar]
  23. Jin M., Lee J., Chang P.H., and Choi C. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control, ITIE, 2009; 56(9): 3593-3601. [Google Scholar]
  24. Shtessel Y.B., Moreno J.A., and Fridman L.M. Twisting sliding mode control with adaptation: Lyapunov design, methodology and application, Autom, 2017; 75: 229-235. [Google Scholar]
  25. Hespanha J.P. Uniform stability of switched linear systems: Extensions of LaSalle’s invariance principle, ITAC, 2004; 49(4): 470-482. [Google Scholar]
  26. Karner T., Gotlih J. Position Control of the Dielectric Elastomer Actuator Based on Fractional Derivatives in Modelling and Control. Actuators, 2021; 10(1):184. [CrossRef] [Google Scholar]
  27. Yu SD, Wu HT, Xie MY, Ma JY, Precise Robust Motion Control of Cell Puncture Mechanism Driven by Piezoelectric Actuators with Fractional-order Nonsingular Terminal Sliding Mode Control, Bio-Design and Manufacturing, 2020; (DOI: 10.1016/j.isatra.2020.02.015) [Google Scholar]
  28. Chin C., Lum S. Rapid modeling and control systems prototyping of a marine robotic vehicle with model uncertainties using xPC Target system, OcEng, 2011; 38(17-18): 2128-2141. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.