Open Access
Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 9 | |
Section | Mathematical Science and Application | |
DOI | https://doi.org/10.1051/matecconf/202235502005 | |
Published online | 12 January 2022 |
- Z. S. Wen, Bifurcations and Exact Traveling Wave Solutions of the Celebrated GreenıNaghdi Equations. International journal of bifurcation and chaos. 7 (2017) 27. [Google Scholar]
- F. F, Contribution Ul’Wtude des Wcoulements permanents et variables dans les canaux La Houille Balance. 8 (1953) 374–388. [Google Scholar]
- C. H. Su, C. S. Gardner, Korteweg-de Vries equation and generalizations. J. Math. Phys. 10 (1969) 536–539. [CrossRef] [Google Scholar]
- A. E. Green, P. M. Naghdi. A derivation of equations for wave propagation in water of variable depth. J. Fluid. Mech. 78 (1976) 237–246. [CrossRef] [Google Scholar]
- F. J. Seabra-Santos, D. P. Renouard, A. M. Temperville, Numerical and experimental study of transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176 (1987) 117–134. [CrossRef] [Google Scholar]
- F. F, P. Milewski. On the fully-nonlinear shallow-water generalized Serre equations. Phys. Lett. A. 374 (2010) 1049–1053 [CrossRef] [Google Scholar]
- O. Le MWtayer, S. S, S. S, A numerical scheme for the Green_Naghdi model. J. Comp. Phys. 229 (2009) 2034–2045. [Google Scholar]
- C. S. Liu, Exact Traveling Wave Solutions for a Kind of Generalized Ginzburg-Landau Equation. Commun. Theor. Phys. 43 (2005) 787–790. [CrossRef] [Google Scholar]
- C. S. Liu, X. H. Du, Coupling Klein-Gordon-Schr dinger equation new exact solution. Acta. Phys. 54 (2005) 1039–1043. [CrossRef] [Google Scholar]
- C. S. Liu, Exact travelling wave solution for (1+1)-dimentional dispersive long wave equation. Chin. Phys. Soc. 14 (2005) 1710–1716. [CrossRef] [Google Scholar]
- C. S. Liu, Equivalent construction of the infinitesimal time translation op ☐ erator in algebraic dynamics algorithm for partial differential evolution e ☐ quation. Science China Physics 53 (2010) 1475–1480. [CrossRef] [Google Scholar]
- C. S. Liu, Exactly solving some typical RiemannıLiouville fractional mod ☐ els by a general method of separation of variables. Commun. Theor. Phys. 72 (2020) 50–55. [Google Scholar]
- C. S. Liu, Using trial equaiton method to solve the exact soutions of variable coefficients nolinear development equation. Chin. Phys. 10 (2005) 4506–4510. [Google Scholar]
- C. S. Liu, Classification of all single travelling wave solutions to Calogero ☐ Focas equation. Commun. Theor. Phys. 48 (2007) 601–604 [CrossRef] [Google Scholar]
- C. S. Liu, New exact envelope traveling wave solutions of high-order disper ☐ sive Cubic-Quintic nonlinear schrodinger equation. Commun. Theor. Phys. 44(2005) 799–801. [CrossRef] [Google Scholar]
- H. T. Wei, Stationary envelope solutions of a nonlinear schr¨odinger-type equation. Optik. 230 (2021) 166351. [CrossRef] [Google Scholar]
- S. X. Liang, J. Z. Zhang, A complete discrimination system for polynomials with complex coefficients and its automatic generation. Science in China Series E. 42 (1999) 113–128. [CrossRef] [Google Scholar]
- L. L, X. R. Hou, Z. B. Zeng, A complete discrimination system for polynomials. Science in China Series E. 05 (1996) 424–441. [Google Scholar]
- J. Z. Zhang, S. X. Liang, Complex coefficients complete discrimination system for polynomials and Auomatic forming. Science in China Series E. 01 (1999) 61–75. [Google Scholar]
- C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181 (2010) 317–324. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.