Open Access
Issue |
MATEC Web Conf.
Volume 349, 2021
6th International Conference of Engineering Against Failure (ICEAF-VI 2021)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 8 | |
Section | Metallic Materials: Characterization, Mechanical Behavior and Modeling, Detection of Metal Failures | |
DOI | https://doi.org/10.1051/matecconf/202134902014 | |
Published online | 15 November 2021 |
- M. G. Nicholas and C. F. Old, “Review Liquid metal embrittlement,” J. Mater. Sci., vol. 14, pp. 1–18, (1979). [CrossRef] [Google Scholar]
- B. Joseph, M. Picat, and F. Barbier, “Liquid metal embrittlement: A state-of-the-art appraisal,” EPJ Appl. Phys., vol. 5, no. 1, pp. 19–31, (1999). [CrossRef] [EDP Sciences] [Google Scholar]
- D. G. Kolman, “A review of recent advances in the understanding of liquid metal embrittlement,” Corrosion, vol. 75, no. 1, pp. 42–57, (2019). [CrossRef] [Google Scholar]
- M. M. Shea and N. S. Stoloff, “Embrittlement of beta-brass alloys by liquid metals and aqueous ammonia,” Mater. Sci. Eng., vol. 12, no. 5–6, pp. 245–253, (1973). [CrossRef] [Google Scholar]
- P. J. L. Fernandes and D. R. H. Jones, “The effects of microstructure on crack initiation in liquid-metal environments,” Eng. Fail. Anal., vol. 4, no. 3, pp. 195–204, (1997). [CrossRef] [Google Scholar]
- I. Serre and J. B. Vogt, “Liquid metal embrittlement of T91 martensitic steel evidenced by small punch test,” Nucl. Eng. Des., vol. 237, no. 7, pp. 677–685, (2007). [CrossRef] [Google Scholar]
- R. Lacalle, J. A. Álvarez, and F. Gutiérrez-Solana, “Use of Small Punch Notched Specimens in the Determination of Fracture Toughness,” in Volume 6: Materials and Fabrication, Parts A and B, (2008), pp. 1363–1369. [Google Scholar]
- E. Martínez-Pañeda, T. E. García, and C. Rodríguez, “Fracture toughness characterization through notched small punch test specimens,” Mater. Sci. Eng. A, vol. 657, pp. 422–430, Mar. (2016). [CrossRef] [Google Scholar]
- A. Legris, G. Nicaise, J. B. Vogt, J. Foct, D. Gorse, D. Vançon, “Embrittlement of a martensitic steel by liquid lead,” Scr Mater, vol. 43, no. 11, pp. 997–1001, (2000). [CrossRef] [Google Scholar]
- A. Hojná, F. Di Gabriele, J. Klecka, and J. Burda, “Behaviour of the steel T91 under uniaxial and multiaxial slow loading in contact with liquid lead,” J. Nucl. Mater., vol. 466, pp. 292–301, (2015). [CrossRef] [Google Scholar]
- D. E. Tyler and W. T. Black, “Introduction to Copper and Copper Alloys,” in Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, (1990), pp. 216–240. [Google Scholar]
- S. Liu, K. Sweatman, S. McDonald, and K. Nogita, “Ga-based alloys in microelectronic interconnects: A review,” Materials (Basel)., vol. 11, no. 8, pp. 1–20, (2018). [Google Scholar]
- Q. Xu, N. Oudalov, Q. Guo, H. M. Jaeger, and E. Brown, “Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium,” Phys. Fluids, vol. 24, no. 6, p. 063101, Jun. (2012). [CrossRef] [Google Scholar]
- H. Nichols and W. Rostoker, “Ductile-brittle transition in alpha brass,” Acta Metall., vol. 8, no. 12, pp. 848–850, (1960). [CrossRef] [Google Scholar]
- M. Bruchhausen et al., “European standard on small punch testing of metallic materials,” Ubiquity Proc., vol. 1, no. S1, p. 11, Sep. (2018). [CrossRef] [Google Scholar]
- T. E. García, C. Rodríguez, F. J. Belzunce, and C. Suárez, “Estimation of the mechanical properties of metallic materials by means of the small punch test,” J. Alloys Compd., vol. 582, pp. 708–717, Jan. (2014). [CrossRef] [Google Scholar]
- D. Kim et al., “Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor,” ACS Appl. Mater. Interfaces, vol. 5, no. 1, pp. 179–185, (2013). [CrossRef] [Google Scholar]
- J.-H. Kang, S.-H. Hong, J. Kim, and S.-J. Kim, “Zn-induced liquid metal embrittlement of galvanized high-Mn steel: Strain-rate dependency,” Mater. Sci. Eng. A, vol. 793, p. 139996, Aug. (2020). [CrossRef] [Google Scholar]
- V. V. Popovich and I. G. Dmukhovskaya, “Rebinder effect in the fracture of Armco iron in liquid metals,” Sov. Mater. Sci., vol. 14, no. 4, pp. 365–370, (1979). [CrossRef] [Google Scholar]
- Z. Hamouche-Hadjem, T. Auger, I. Guillot, and D. Gorse, “Susceptibility to LME of 316L and T91 steels by LBE: Effect of strain rate,” J. Nucl. Mater., vol. 376, no. 3, pp. 317–321, Jun. (2008). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.