Open Access
Issue
MATEC Web Conf.
Volume 347, 2021
12th South African Conference on Computational and Applied Mechanics (SACAM2020)
Article Number 00036
Number of page(s) 12
DOI https://doi.org/10.1051/matecconf/202134700036
Published online 23 November 2021
  1. R. Fourie, Discrete element simulation for the loading of a steep inclinde side wall conveyor, Potchefstroom: North-West University (2018) [Google Scholar]
  2. Siemens Product Lifecycle Management Software Inc., Simcenter STAR-CCM+ : User Manual. (2019) [Google Scholar]
  3. Siemens PLM, Fluid Dynamics Simulation (2021) Online. Available: https://www.plm.automation.siemens.com/global/en/products/simulation-test/fluid-dynamics-simulation.html. Accessed (29-04-2021). [Google Scholar]
  4. C. Coetzee, Review: Calibration of the discrete element method, Powder Technol., 104 (2017) [Google Scholar]
  5. M. Thompson, From the field of the computer A case study on the development of input parameters for DEM simulation purposes, IMHC (2008) [Google Scholar]
  6. M. Marigo, E. Stitt, Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets KONA Powder Part. J., 236 (2015) [Google Scholar]
  7. A. Grima, P. Wypych, Investigation into calibration of discrete element model parameters for scale-up and validation of particle-structure interactions under impact conditions, Powder Technol., 198 (2011) [Google Scholar]
  8. E. Horn, The calibration of Material Properties for use in Discrete Element Models, Stellenbosch: Stellenbosch University (2012) [Google Scholar]
  9. J. Quist, M. Evertsson, Framework for DEM Model Calibration and Validation in Proceeding of the 14th European Symposium on Comminution and Classification (2015) [Google Scholar]
  10. T. Roessler, A. Katterfeld, Scalability of Angle of Repose Tests for the Calibration of DEM Parameters in ICBMH2016 Conference (2016) [Google Scholar]
  11. Y. Shigeto, M. Sakai, S. Matsusaka, Development of a large scale discrete element modeling for a fine particle conveying, Engineers Australia (2011) [Google Scholar]
  12. L. Xie, W. Zhong, H. Zhang, A. Yu, Y. Qian, Y. Situ, Wear process during granular flow transportation in conveyor transfer, Powder Technol., 288, 65 (2016) [CrossRef] [Google Scholar]
  13. C. Coetzee, Calibration of the discrete element method and the effect of particle shape, Powder Technol., 50 (2016) [Google Scholar]
  14. M. Pasha, C. Hare, M. Ghadiri, A. Gunadi, P. Piccione, Effect of particle shape on flow in discrete element method simulation of a rotary batch seed coater, Powder Technol., 296, 29 (2016) [CrossRef] [Google Scholar]
  15. D. Markauskas, R. Kacianauskas, Investigation of rice grain flow by multi-sphere particle model with rolling resistance, Granul. Matter, 2, 143, (2011) [CrossRef] [Google Scholar]
  16. S. Timoshenko, Theory of Elasticity (1951) [Google Scholar]
  17. M. Paulick, M. Morgenmeyer, A. Kwade, Review on the influence of elastic particle properties on DEM simulation results, Powder Technol., 283, 66 (2015) [CrossRef] [Google Scholar]
  18. Q. Li, M. Feng, Z. Zou, Validation and Calibration Approach for Discrete Element Simulation of Burden Charging in Pre-reduction Shaft Furnace of COREX Process, ISIJ Int., 53, 1365 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.