Open Access
Issue
MATEC Web Conf.
Volume 346, 2021
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2021)
Article Number 01038
Number of page(s) 6
Section Materials Processing Technologies
DOI https://doi.org/10.1051/matecconf/202134601038
Published online 26 October 2021
  1. L. Li, H.A. Kishawy, A model for cutting forces generated during machining with self-propelled rotary tools, International Journal of Machine Tools & Manufacture 46, 1388–1394 (2006) [Google Scholar]
  2. Pradeep Kumar Baro, Suhas S. Joshi, S.G. Kapoor, Modeling of cutting forces in a face-milling operation with self-propelled round insert milling cutter, International Journal of Machine Tools & Manufacture 45, 831–839 (2005) [Google Scholar]
  3. V.A. Zemlyanskii, B.V. Lupkin, Obrabotka vysokoprochnykhmaterialov instrumentami s samovrashchayushchimisya reztsami (Treatment of High-Strength materials by the Tools with Self-Rotating Cutters) (Tekhnika, Kiev, 1980) [Google Scholar]
  4. P.I. Yashcheritsyn, A.V. Borisenko, I.G. Drevotin, V.Ya. Lebedev, Rotatsionnoe rezanie materialov (Rotation Cutting of Materials) (Nauka i Tekhnika, Minsk, 1987) [Google Scholar]
  5. L.A. Gik, Rotatsionnoe rezanie metallov (Rotation Cutting of Metals) (Kaliningr. Knizh. Izd., Kaliningrad, 1990) [Google Scholar]
  6. E.O. Ezugwu, Improvements in the machining of aero-engine alloys using self-propelled rotary tooling technique, Journal of Materials Processing Technology 185, 60–71 (2007) [Google Scholar]
  7. Shuting Lei, Wenjie Liu, High-speed machining of titanium alloys using the driven rotary tool, International Journal of Machine Tools & Manufacture 42, 653–661 (2002) [Google Scholar]
  8. S.M. Salodkar, A. Manna, A Study on Self Propelled Rotary Tool During Turning of E0300 Alloy Steel, International Journal of Applied Engineering Research 5, 17 2929–2933 (2010) [Google Scholar]
  9. Joanna Kossakowska, Krzysztof Jemielniak, Application of Self-Propelled Rotary Tools for turning of difficult-tomachine materials, Procedia CIRP 1, 425–430 (2012) [Google Scholar]
  10. Utku Olgun, Erhan Budak, Machining of Difficult-to-Cut-Alloys Using Rotary Turning Tools, Procedia CIRP 8, 81–87 (2013) [Google Scholar]
  11. J.H. Balaji, V. Krishnaraj, S. Yogeswaraj, Investigation on High Speed Turning of Titanium Alloys, Procedia Engineering 64, 926–935 (2013) [Google Scholar]
  12. Halil Çalışkan, Cahit Kurbanoğlu, Peter Panjan, Davorin Kramar, Investigation of the performance of carbide cutting tools with hard coatings in hard milling based on the response surface methodology, Advanced Manufacture Technology 883–893 (2013) [Google Scholar]
  13. Vincent Dessoly, Shreyes N. Melkote, Christophe Lescalier, Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel, International Journal of Machine Tools & Manufacture 44, 1463–1470 (2004) [Google Scholar]
  14. Wangshen Hao, Xunsheng Zhu, Xifeng Li, Gelvis Turyagyenda, Prediction of cutting force for self-propelled rotary tool using artificial neural networks, Journal of Materials Processing Technology 180, 23–29 (2006) [Google Scholar]
  15. H.A. Kishawy, J. Wilcox, Tool wear and chip formation during hard turning with self-propelled rotary tools, International Journal of Machine Tools & Manufacture 43, 433–439 (2003) [Google Scholar]
  16. H.A. Kishawy, Lei Pang, M. Balazinski, Modeling of tool wear during hard turning with self-propelled rotary tools, International Journal of Mechanical Sciences 53, 1015–1021 (2011) [Google Scholar]
  17. Yu. M. Yermakov, Development of rotary cutting methods (VNIITEMR, Moscow, 1989) [Google Scholar]
  18. Takashi Ueda, Turning with Rotary Tools, Procedia CIRP 1255–1262 (2014) [Google Scholar]
  19. Eckart Uhlmanna, Felix Kaulferscha, Martin Roeder, Turning of high-performance materials with rotating indexable inserts, Procedia CIRP 14, 610–615 (2014) [Google Scholar]
  20. Hiroyuki Sasaharaa, Atsushi Katoa, Hiroshi Nakajimaa, Hiromasa Yamamotob, Toshiyuki Murakib, Masaomi Tsutsumi, High-speed rotary cutting of difficult-to-cut materials on multitasking lathe, International Journal of Machine Tools & Manufacture 48, 841–850 (2008) [Google Scholar]
  21. Wataru Takahashi, Hiroyuki Sasahara, Hiromasa Yamamoto, Yuji Takagi, FEM Simulation on the Effect of Cutting Parameters in the Driven Rotary Cutting, Key Engineering Materials 625, 564–569 (2015) [Google Scholar]
  22. Sy Quy Nguyen, BoHung Kim, Hyeong-Ho Yu, Sung-Tae Hong, Kyu Yeol Park, Surface Texturing by Turning Process using Circular Driven Rotary Tool with Multiple Cutting Edges, International journal of precision Engineering and Manufacturing 15, 6, 1137–1142 (2014) [Google Scholar]
  23. E.G. Konovalov, V.A. Sidorenko, A.V. Sous, Progressivnye skhemy rotatsionnogo rezaniya metallov (Progressive Systems for Rotary Metal Cutting) (Nauka i Tekhnika, Minsk, 1972) [Google Scholar]
  24. H.A. Kishawy, L. Li, A.I. EL-Wahab, Prediction of chip flow direction during machining with self-propelled rotary tools, International Journal of Machine Tools & Manufacture 46, 1680–1688 (2006) [Google Scholar]
  25. T. Carlsson, T. Stjernstoft, A model for calculation of the geometrical shape of the cutting tool-work piece interface, Journal of Materials Processing Technology 180, 23–29 (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.