Open Access
MATEC Web Conf.
Volume 345, 2021
20th Conference on Power System Engineering
Article Number 00033
Number of page(s) 12
Published online 12 October 2021
  1. Rhee, J., Im, J., Kim, J., Song, S.J. Humidity effects on the aerodynamic performance of a transonic compressor cascade. International Journal of Heat and Mass Transfer. (2019): p. 743-751. [CrossRef] [Google Scholar]
  2. Gyarmathy, G. Grundlagen einer Theorie der Nassdamfturbine Juris-Verlag; (1962). [Google Scholar]
  3. Young, J.B. Spontaneous Condensation of Steam in Supersonic Nozzles: N81-13307. , Whittle Laboratory, University of Cambridge; (1980). [Google Scholar]
  4. Young, J.B. Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades. Journal of Turbomachinery. (1992): p. 569-579. [CrossRef] [Google Scholar]
  5. Fuchs, N., Sutugin A. Topics in Current Aerosol Research New York; (1971). [Google Scholar]
  6. Schneer, G.H., Mundinger, G. Similarity, drag, and lift in transonic flow with given internal heat addition. European Journal of Mechanics - B/Fluids. (1993): p. 597-611. [Google Scholar]
  7. Schneer, G.H., Dohrmann U. Drag and lift in non-adiabatic transonic flow. AIAA Journal. (1994): p. 101-107. [Google Scholar]
  8. Schneer, G.H., Dohrmann U. Transonic flow around airfoils with relaxation and energy supply by homogeneous condensation. AIAA Journal. (1990): p. 1187-1193. [CrossRef] [Google Scholar]
  9. Dykas, S. Badania przeplywow transonicznych z kondensacjq pary wodnej Gliwice: Wydawnictwo Politechniki Slqskiej; (2006). [Google Scholar]
  10. Adam, S. Adam, S. Numerische und experimentelle Untersuchung instationarer Dusenstromungen mit Energiezufuhr durch homogene Kondensation. Karlsruhe; (1996). [Google Scholar]
  11. Goodheart, K.A., Dykas, S., Schneer, G.H. Numerical modelling of heterogeneous/homogeneous condensation on the ONERA M6 wing. In Proceedings of the 12th International Conference on Fluid Flow Technologies; (2003); Budapest. p. 335-342. [Google Scholar]
  12. Dykas, S., Majkut, M., Smolka, K., Strozik, M. Comprehensive investigations into thermal and flow phenomena occurring in the atmospheric air two-phase flow through nozzles. International Journal of Heat and Mass Transfer. (2017) November: p. 1072-1085. [CrossRef] [Google Scholar]
  13. Dykas, S., Majkut, M., Smolka, K. Influence of Air Humidity on Transonic Flows with Weak Shock Waves. Journal of Thermal Science. (2019). [Google Scholar]
  14. Wisniewski, P., Dykas, S., Yamamoto, S. Importance of Air Humidity and Contaminations in the Internal and External Transonic Flows. Energies. (2020) June. [Google Scholar]
  15. Wisniewski, P., Dykas, S., Yamamoto, S., Pritz, B. Numerical approaches for moist air condensing flows modelling in the. International Journal of Heat and Mass Transfer. (2020);(162). [Google Scholar]
  16. Yamamoto, S., Hagari, H., Murayama, M. Numerical simulation of condensation around the 3-D wing. Transactions of the Japan Society for Aeronautical and Space Sciences. (2000): p. 182-189. [Google Scholar]
  17. Yamamoto, S. Computation of practical flow problems with release of latent heat. Energy. (2005): p. 197-208. [CrossRef] [Google Scholar]
  18. Moriguchi, S., Endo, T., Miyazawa, H., Furusawa, T., Yamamoto, S. Numerical Simulation of Unsteady Moist-air Flows through Whole-annulus Rotor Blade Rows in Transonic Compressor. In Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference AJKFluids2019; (2019); San Francisco. [Google Scholar]
  19. Zhang, G., Zhang, X., Wang, F., Dingbiao, W., Zunlong, J. The relationship between the nucleation process and boundary conditions on non-equilibrium condensing flow based on the modified model. International Journal of Multiphase Flow. (2019) May: p. 180-191. [CrossRef] [Google Scholar]
  20. Karabelas, S.J., Markatos, N.C. Water vapor condensation in forced convection flow over an airfoil. Aerospace Science and Technology. (2008): p. 150-158. [CrossRef] [Google Scholar]
  21. Edathol, J., Brezgin, D., Aronson, K., Dong Kim, H. Prediction of non-equilibrium homogeneous condensation in supersonic nozzle flows using Eulerian-Eulerian models. International Journal of Heat and Mass Transfer. (2020). [Google Scholar]
  22. Zhang, G., Zhang, X., Wang, F., Wang, D., Jin, Z., Zhou, Z. Design and optimization of novel dehumidification strategies based on modified nucleation model in three-dimensional cascade. Energy. (2019) November. [Google Scholar]
  23. Zhang, G., Zhang, X., Wang, F., Wang, D., Jin, Z., Zhou, Z. Numerical investigation of novel dehumidification strategies in nuclear plant steam turbine based on the modified nucleation model. International Journal of Multiphase Flow. (2019) November. [Google Scholar]
  24. Zhang, G., Wang, F., Wang, D., Wu, T., Qin, X., Jin, Z. Numerical study of the dehumidification structure optimization based on the modified model. Energy Conversion and Management. (2019) February: p. 159-177. [CrossRef] [Google Scholar]
  25. Zhang, G., Dykas, S. Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Applied Thermal Engineering. (2020). [Google Scholar]
  26. Zhang, G., Dykas, S., Majkut, M., Smolka, K., Cai, X. Experimental and numerical research on the effect of the inlet steam superheat degree on the spontaneous condensation in the IWSEP nozzle. International Journal of Heat and Mass Transfer. (2021). [Google Scholar]
  27. Zhang, G., Dykas, S., Li, P., Li, H., Wang, J. Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system. Energy. (2020). [Google Scholar]
  28. Sun, W., Cao, X., Yang, W., Jin, X. Numerical simulation of CO2 condensation process from CH4-CO2 binary gas mixture in supersonic nozzles. Separation and Purification Technology. (2017): p. 238-249. [CrossRef] [Google Scholar]
  29. ANSYS. [Online]. [cited 2020 01 20. Available from: [Google Scholar]
  30. Menter, F.R. Two-equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. (1994): p. 1598-1605. [NASA ADS] [CrossRef] [Google Scholar]
  31. ANSYS Fluent Theory Guide, 2021R1. [Online]. [cited 2021 July 1. [Google Scholar]
  32. Wos, A. Meteorologia dla geografow [Meteorology for geographers] Warszawa: Wydawnictwo Naukowe PWN; (2002) [Google Scholar]
  33. Kantrowitz, A. Nucleation in very rapid vapor expansions. J. Chem. Phys.'. (1951): p. 1097-1100. [CrossRef] [Google Scholar]
  34. Kermani, M.J., Gerber, A.G. A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow. International Journal of Heat and Mass Transfer. (2003). [Google Scholar]
  35. Wroblewski, W., Dykas, S., Gardzilewicz, A., Kolvratnik, M. Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine. Journal of Fluids Engineering. (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.