Open Access
Issue
MATEC Web Conf.
Volume 345, 2021
20th Conference on Power System Engineering
Article Number 00029
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/202134500029
Published online 12 October 2021
  1. M. Benedict, Fundamental understanding of cycloidal - rotor concept for micro air vehicle applications. (2010). [Google Scholar]
  2. J. Augusto, L. Monteiro, J. Pâscoa, C. Xisto, Aerodynamic optimization of cyclorotors. Aircraft Engineering and Aerospace Technology. (2016). [Google Scholar]
  3. C. Xisto, J. Pâscoa, M. Trancossi, Geometrical Parameters Influencing the Aerodynamic Efficiency of a Small-Scale Self-Pitch High Solidity VAWT, April (2016), Journal of Solar Energy Engineering 138(3):pp.10 [CrossRef] [Google Scholar]
  4. C. Xisto, J. Leger, J. Pâscoa, L. Gagnon, P. Masarati, D. Angeli, A. Dumas, Parametric Analysis of a Large - scale Cycloidal Rotor in Hovering Conditions, July (2016), Journal of Aerospace Engineering 30(1). [Google Scholar]
  5. A. Andrisani, D. Angeli, A. Dumas, Optimal pitching schedules for a cycloidal rotor in hovering August (2016), Aircraft Engineering and Aerospace Technology 88(5) [Google Scholar]
  6. E. Shrestha, D. Yeo, M. Benedict, I. Chopra, Development of a Meso-scale Cycloidal- rotor Aircraft for Micro Air Vehicle Application, May (2017), International Journal of Micro Air Vehicles 9(3) [Google Scholar]
  7. M. Rami and J. Pascoa, “Numerical Analysis of a Cycloidal Rotor under Diverse Operating Conditions and Altitudes,” SAE Technical Paper 2019-01-1872, (2019), doi: 10.4271/2019-01-1872. [Google Scholar]
  8. M. Benedict, M. Ramasamy, I. Chopra, Improving the Aerodynamic Performance of Micro-Air-Vehicle-Scale Cycloidal Rotor: An Experimental Approach, July (2010), Journal of Aircraft 47(4):1117-1125 [CrossRef] [Google Scholar]
  9. E. Shrestha, D. Yeo, M. Benedict, I. Chopra, Development of a Meso-scale Cycloidal- rotor Aircraft for Micro Air Vehicle Application, May (2017), International Journal of Micro Air Vehicles 9(3): [Google Scholar]
  10. S. Dykas, M. Majkut, K. Smolka, M. Strozik, T. Chmielniak, T. Stasko, Numerical and Experimental Investigation of the Fan with Cycloidal Rotor, Mechanics and Mechanical Engineering Vol. 22, No. 2 (2018) 447-454 [Google Scholar]
  11. T. Stasko, S. Dykas, M. Majkut, K. Smolka, An attempt to evaluate the cycloidal rotor fan performance, Open Journal of Fluid Dynamics, (2019), 9, 292-30 [CrossRef] [Google Scholar]
  12. P. Wisniewski, F. Balduzzi, Z. Bulinski, A. Bianchini, A Numerical Analysis on the Effectiveness of Gurney Flaps as Power Augumentation Devices for Airfoils Subject to a Continuous Variation of the Angle of Attack by Use od Full and Surrogate Models, Energies, vol:13,(2020) [Google Scholar]
  13. C. Xisto, J. Pâscoa, J. Leger, Cycloidal Rotor Propulsion System with Plasma Enhanced Aerodynamics. In ASME 2014 International Mechanical Engineering Congress & Exposition; November 14-20, (2014); Montreal, Canada. [Google Scholar]
  14. F. Heitmann, M. Juling, J. Steinbock, Performance of the LDA Volumetric Flow Rate Standard Under Severely Disturbed Flow Conditions, Flow Measurement and Instrumentation, Volume 74, (2020), 101756, ISSN 0955-5986, [CrossRef] [Google Scholar]
  15. Y. Han, S.Q. Yang, N. Dharmasiri, M. Sivakumar, Effects of sample size and concentration of seeding in LDA measurements on the velocity bias in open channel flow, Flow Measurement and Instrumentation, Volume 38, (2014), Pages 9297, ISSN 0955-5986, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.