Open Access
Issue
MATEC Web Conf.
Volume 345, 2021
20th Conference on Power System Engineering
Article Number 00030
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/202134500030
Published online 12 October 2021
  1. S.B. Pope, Turbulent Flows, Cambridge University Press, (2000) [Google Scholar]
  2. G. Ilieva “A deep insight to secondary flows”, Defect and Diffusion Forum 379: 83107 (2017) [CrossRef] [Google Scholar]
  3. D. Duda, T. Jelinek, P. Milcâk, M. Nëmec, V. Uruba, V. Yanovych, P. Zitek, “Experimental Investigation of the Unsteady Stator/Rotor Wake Characteristics Downstream of an Axial Air Turbine”, Int. J. Turbomach. Propuls. Power 6(3): 22 (2021), doi: 10.3390/ijtpp6030022 [CrossRef] [Google Scholar]
  4. J. Schottler, J. Bartl, F. Mühle, L. Sætran, J. Peinke, M. Hölling, “Wind tunnel experiments on wind turbine wakes in yaw: redefining the wake width”, Wind Energ. Sci. 3: 257-273 (2018), doi: 10.5194/wes-3-257-2018 [CrossRef] [Google Scholar]
  5. J.J. Niemela, L. Skrbek, K.R. Sreenivasan, “The wind in confined thermal convection”, J. Fluid Mech. 449: 169-173 (2001), doi: 10.1017/S0022112001006310 [CrossRef] [Google Scholar]
  6. D. Duda, M. La Mantia, M. Rotter, L. Skrbek, “On the visualization of thermal counterflow of He II past a circular cylinder”, J. Low Temp. Phys. 175: 331-338 (2014), doi: 10.1007/s10909-013-0961-z [CrossRef] [Google Scholar]
  7. L. Skrbek, P. Urban “Has the ultimate state of turbulent thermal convection been observed?” J. Fluid Mech. 785: 270-282 (2015), doi: 10.1017/jfm.2015.638 [CrossRef] [Google Scholar]
  8. V.D. Arp, R.D. McCarty, D.G. Friend “Thermophysical properties of helium-4 from 0.8 to 1500 K with pressures to 2000 MPa”, NIST technical note 1334 (1998) [Google Scholar]
  9. C.H.K. Williamson, “Vortex Dynamics in the Cylinder Wake”, Annual Review of Fluid Mechanics 28:1, 477-539 (1996), doi: 10.1146/annurev.fl.28.010196.002401 [NASA ADS] [CrossRef] [Google Scholar]
  10. V. Strouhal, “Über eine besondere Art der Tonerregung”, Ann. Phys, 241: 216-251 (1878), doi: 10.1002/andp.18782411005 [CrossRef] [Google Scholar]
  11. D. Duda, P. Svancara, M. La Mantia, M. Rotter, L. Skrbek “Visualization of viscous and quantum flows of liquid He 4 due to an oscillating cylinder of rectangular cross section”, Phys. Rev. B 92 064519 (2015), doi: 10.1103/PhysRevB.92.064519 [CrossRef] [Google Scholar]
  12. D. Duda, M. La Mantia, L. Skrbek “Streaming flow due to a quartz tuning fork oscillating in normal and superfluid He 4” Phys. Rev. B 92: 024519 (2017), doi: 10.1103/PhysRevB.96.024519 [CrossRef] [Google Scholar]
  13. V. Yanovych, D. Duda, V. Uruba “Structure turbulent flow behind a square cylinder with an angle of incidence” European Journal of Mechanics B/Fluids 85: 110-123 (2021), doi: 10.1016/j.euromechflu.2020.09.003 [CrossRef] [Google Scholar]
  14. D. Duda “How Manufacturing Inaccuracies Affect Vortices in an Airfoil Wake” Proceedings Topical Problems of Fluid Mechanics 2021: 48-55 (2021), doi: 10.14311/TPFM.2021.007 [Google Scholar]
  15. W. Terra, A. Sciacchitano, F. Scarano, Aerodynamic drag of a transiting sphere by large-scale tomographic-PIV, Exp Fluids 58:83 (2017), doi: 10.1007/s00348-017-2331-0 [Google Scholar]
  16. D. Duda “The PIV study of air flow past the counter-swirler 53983” MATEC Web of Conferences 168: 05004 (2018), doi: 10.1051/matecconf/201816805004 [CrossRef] [EDP Sciences] [Google Scholar]
  17. C. Tropea, A.L. Yarin, and J.F. Foss, “Springer handbook of experimental fluid mechanics”, Springer (2007) [Google Scholar]
  18. D. Duda, V. Uruba “PIV of air flow over a step and discussion of fluctuation decompositions” AIP Conference Proceedings 2000: 020005 (2018), doi: 10.1063/1.5049912 [CrossRef] [Google Scholar]
  19. D. Duda and V. Uruba, “Spatial spectrum form Particle Image Velocimetry data”, ASME J of Nuclear Rad Sci. 5 (3): 030912 (2019) [CrossRef] [Google Scholar]
  20. C.H.K. Williamson, Three-dimensional wake transition. Journal of Fluid Mechanics, 328: 345-407. (2006), doi: 10.1017/S0022112096008750 [Google Scholar]
  21. P. Pavlicek “Local Reynolds number” AIP Conference Proceedings 2118, 030035 (2019); doi: 10.1063/1.5114763 [CrossRef] [Google Scholar]
  22. I.K. Marchevsky, K.S. Kuzmina, E.P. Ryatina “Flow Simulation around a Circular Cylinder for Low Reynolds Numbers and Determining the Flow Separation Point in VM2D Code” Proceedings Topical Problems of Fluid Mechanics 2020: 144-151 (2020), doi: 10.14311/TPFM.2020.019 [Google Scholar]
  23. C.H.K. Williamson “Vortex dynamics in the wake of a cylinder”, chapter in S.I. Green “Fluid vortices”, 155-234, Kluwer Academic Publishers (1995), isbn: 0-79233376-4 [Google Scholar]
  24. C.H.K. Williamson, A. Roshko “Measurement of base pressure in the wake of a cylinder at low Reynolds numbers” Zeitschrift für Flugwissenschaften und Weltraumforschung 14: 38-46 (1990) [Google Scholar]
  25. C. Norberg “Effect of Reynolds numbers and a low-intensity freestream turbulence on the flow around a circular cylinder” Chalmers University of Technology, publication Nr. 87/2, S-412-96 (1987) [Google Scholar]
  26. P.W. Bearman “On the vortex shedding from a circular cylinder in the critical Reynolds number regime” J. Fluid Mech. 37: 577-585 (1969), doi: 10.1017/S0022112069000735 [CrossRef] [Google Scholar]
  27. W.C.L. Shih, C. Wang, D. Coles, A. Roshko “Experiments on flow past rough circular cylinders at large Reynolds numbers” 2nd Int. Coll. On Bluff Body Aerod. And Applic., Melbourne (1992) [Google Scholar]
  28. S.C.R. Dennis, G.Z. Chang “Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100” J. Fluid Mech. 42: 471-489 (1970), doi: 10.1017/S0022112070001428 [CrossRef] [Google Scholar]
  29. V. Yanovych, D. Duda, V. Horâcek, V. Uruba “Research of a wind tunnel parameters by means of cross-section analysis of air flow profiles” AIP Conference Proceedings 2189: 020024 (2019), doi: 10.1063/1.5138636 [CrossRef] [Google Scholar]
  30. V. Yanovych, D. Duda “Structural deformation of a running wind tunnel measured by optical scanning” Strojnicky Casopis 70(2): 181-196 (2020), doi: 10.2478/scjme-2020-0030 [CrossRef] [Google Scholar]
  31. D. Duda, T. Jelinek, M. Nëmec, V. Uruba, V. Yanovych, P. Zitek “Observation of flow structure past a full-stage axial air turbine at the nominal and off-design states” AIP Conference Proceedings 2323: 030004 (2020), doi: 10.1063/5.0041491 [Google Scholar]
  32. D. Duda, T. Jelinek, M. Nëmec, V. Uruba, V. Yanovych, P. Zitek “Particle image velocimetry measurement inside axial air test turbine - Effect of window” AIP Conference Proceedings 2323: 030005 (2020), doi: 10.1063/5.0041492 [Google Scholar]
  33. D. Duda, J. Bém, V. Yanovych, P. Pavlicek, V. Uruba “Secondary flow of second kind in a short channel observed by PIV” European Journal of Mechanics B/ Fluids 79: 444-453 (2020), doi: 10.1016/j.euromechflu.2019.10.005 [CrossRef] [Google Scholar]
  34. D. Duda, V. Yanovych, V. Uruba “An experimental study of turbulent mixing in channel flow past a grid” Processes 8: 1-17 (2020), doi: 10.3390/pr8111355 [CrossRef] [Google Scholar]
  35. D. Duda “Preliminary PIV measurement of an air jet” AIP Conference Proceedings 2047: 020001 (2018), doi: 10.1063/1.5081634 [CrossRef] [Google Scholar]
  36. V. Uruba, P. Prochâzka, “The Reynolds number effect on dynamics of the wake behind a circular cylinder”, AIP Conference Proceedings 2189, 020023 (2019), doi: 10.1063/1.5138635 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.