Open Access
MATEC Web Conf.
Volume 344, 2021
International Scientific and Practical Conference “Modern Problems and Directions of Development of Metal Science and Heat Treatment of Metals and Alloys, Dedicated to the Memory of Academician A. A. Baykov” (MPM 2021)
Article Number 01019
Number of page(s) 7
Published online 01 October 2021
  1. A.V. Malyarov, A.E. Gvozdev, I.V. Minaev, I. V. Tikhonov. Structural and phase transformations of carbon steels in different conditions and states: monograph: 2nd ed., Rev. and add. Tula: Publishing house of TulSU, 2020. 278 p. [Google Scholar]
  2. O.V. Kuzovleva, I.V. Tikhonova, N.E. Starikov, A.E. Gvozdev. The disintegration of cementite of carbon steels during thermal cycling. Proizvodstvo prokat. 2008. No. 8. S. 36-37. [Google Scholar]
  3. I.V. Tikhonova, A.V. Malyarov, A.E. Gvozdev, N.E. Starikov. Influence of the temperature range of thermal cycling treatment on the decomposition of cementite in carbon steels. Procurement production in mechanical engineering. 2010. No. 10. S. 39-41. [Google Scholar]
  4. A. E. Gvozdev, A. G. Kolmakov, A. V. Malyarov, N. N. Sergeev, I. V. Tikhonova. Heterogeneous nucleation of graphite in carbon steels during the decomposition of cementite in the process of TCT near the point A0. Materials Science 2013. No. 10. S. 48-52. [Google Scholar]
  5. A.E. Gvozdev, A.G. Kolmakov, A.V. Malyarov, N.N. Sergeev, I.V. Tikhonova. Influence of elements of graphitizers on the decomposition of cementite during thermal cycling near A0 carbon steels. Materials Science. 2013. No. 11. S. 43-45. [Google Scholar]
  6. A.E. Gvozdev, A.G. Kolmakov, A.V. Malyarov, N.N. Sergeev, I.V. Tikhonova, M.E. Prutskov. Conditions for the manifestation of cementite instability during thermal cycling of carbon steels. Materials Science. 2014. No. 10. S. 31-36. [Google Scholar]
  7. Nawaz W., Xu S., Huang B., Wu X., Wu Z., Li Y., “Nanotechnology and immunoengineering: how nanotechnology can boost car-t therapy“, Acta Biomaterialia. 2020. No. 109. pp. 21-36. [CrossRef] [Google Scholar]
  8. Povarova K.B. Powder Metallurgy of Tungsten Alloys, Proceedings of 3rd EURO PM 2004 Powder Metallurgy World Congress and Exhibition, 2004, No. 5, рр. 106-112. [Google Scholar]
  9. Antsiferova I.V., Esaulova I.A., “Nanotechnology research and education centers as an intellectual basis of nanotechnology in Russia“, Middle East Journal of Scientific Research. 2013. No. 13. pp. 127-131. [Google Scholar]
  10. Wong K.K.Y., Liu X., “Nanotechnology meets regenerative medicine: a new frontier?“, Nanotechnology Reviews. 2013. Т. 2. No. 1. pp. 59-71. [CrossRef] [Google Scholar]
  11. Balykina A.M., Rybalko V.V., Shelamov V.A., “Practical tasks of training of specialists for nanotechnology industry“, International Journal of Nanotechnology. 2019. Т. 16. No.6-10. pp. 562-568. [CrossRef] [Google Scholar]
  12. Occhiutto M.L., Costa V.P., Maranhão R.C., Konstas A.G., “Nanotechnology for medical and surgical glaucoma therapy-a review, Advances in Therapy. 2020. Т. 37. No.1. pp. 155-199. [CrossRef] [Google Scholar]
  13. Phung C.D., Pham L.M., Jeong J.-H., Yong C.S., Kim J.O., Tran T.H., Nguyen H.T., “Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia“, Journal of Controlled Release. 2020. Т. 324. pp. 413-429. [CrossRef] [Google Scholar]
  14. Dar A.H., Rashid N., Dar M.A., Majid I., Hussain S., “Nanotechnology interventions in aquaculture and seafood preservation“, Critical Reviews in Food Science and Nutrition“, 2020. Т. 60. No. 11. pp. 1912-1921. [CrossRef] [Google Scholar]
  15. Desai P., Thumma N.J., Wagh P.R., Zhan S., Wang J., Prabhu S., Ann D., “Cancer chemoprevention using nanotechnology-based approaches“, Frontiers in Pharmacology. 2020. Т. 11. pp. 323. [CrossRef] [Google Scholar]
  16. Choubdar N., Avizheh S., “Nanotechnology based delivery systems of drugs currently used to treat alzheimer’s disease“, Nanoscience and Nanotechnology Asia. 2020. Т. 10. No. 3. pp. 228-247. [CrossRef] [Google Scholar]
  17. Khorev, A.I., “Alloying and heat treatment of structural (α + β) titanium alloys of high and superhigh strength“, Russian Engineering Research, 2010, vol. 30, No. 7, pp. 682-688. [CrossRef] [Google Scholar]
  18. E.V. Ageev, R.A. Latypov, Fabrication and investigation of carbide billets from powders prepared by electroerosive dispersion of tungsten-containing wastes, Russian Journal of Non-Ferrous Metals, 2014, vol. 55, No. 6, pp. 577–580. [CrossRef] [Google Scholar]
  19. E.V. Ageevа, E.V. Ageev, N.M. Horyakova, Morphology of copper powder produced by electrospark dispersion from waste, Russian Engineering Research, 2014, vol. 34, No. 11, pp. 694–696. [CrossRef] [Google Scholar]
  20. E.V. Ageev, R.A. Latypov, E.V. Ageevа, Investigation into the properties of electroerosive powders and hard alloy fabricated from them by isostatic pressing and sintering, Russian Journal of Non-Ferrous Metals, 2015, vol. 56, No. 1, pp. 52–62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.