Open Access
Issue
MATEC Web Conf.
Volume 344, 2021
International Scientific and Practical Conference “Modern Problems and Directions of Development of Metal Science and Heat Treatment of Metals and Alloys, Dedicated to the Memory of Academician A. A. Baykov” (MPM 2021)
Article Number 01010
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/202134401010
Published online 01 October 2021
  1. C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature, v. 121, p. 501 (1928) [CrossRef] [Google Scholar]
  2. C.V. Raman, A new type of secondary radiation, Nature, v. 121, p. 619 (1928) [CrossRef] [Google Scholar]
  3. G. Landsberg, L. Mandelstam, Eine neue Erscheinung bei der Lichtzertreuung, Naturwissenschaften, v. В. 16, p. 557 (1928) [CrossRef] [Google Scholar]
  4. V.S. Gorelik, Modern problems of Raman spectroscopy, Ed. M.M. Sushinsky (Nauka, Moscow, 1978) [Google Scholar]
  5. I.L. Fabelinsky, Prediction and discovery of the fine structure of the Rayleigh line, Uspekhi Fizicheskikh Nauk, v. 170, p. 93 (2000) [CrossRef] [Google Scholar]
  6. G. Plachek, Rayleigh Scattering and Raman effect, Ed. prof. L. Rosenkevich (State scientific tech. publishing house of Ukraine, Kharkov, 1935) [Google Scholar]
  7. G.A. Melnikov, V.N. Verveyko, Yu.F. Melikhov, M.V. Verveyko, A.V. Polanski, Heat capacity and elastic characteristics of monoatomic and organic liquids with account for cluster formation, High Temperature, v. 50(2), p. 214, (2012) [CrossRef] [Google Scholar]
  8. D.Yu. Dubov, A.A. Vostrikov, Dipole capture of a slow electron by a water cluster, JETP Letters, v. 86, pp. 454–457 (2007) [CrossRef] [Google Scholar]
  9. A.A. Vostrikov, D.Yu. Dubov, S.V. Drozdov, Dipole moment of water clusters and the greenhouse effect, Letters in JETP, v. 34(5), pp. 87–94, (2008) [Google Scholar]
  10. G.A. Melnikov, N.M. Ignatenko, A.V. Polyansky, The polarizability of molecules within the cluster model of matter, Bulletin of Kursk State University, no. 4(33), pp. 17–24 (2010) [Google Scholar]
  11. G.A. Melnikov, Heat of Melting of Small Clusters in the Model of the Potential with the Effective Well Depth, Physics of the Solid State, v. 60(5), pp. 1000–1004 (2018) [CrossRef] [Google Scholar]
  12. Y.I. Frenkel, A.I. Gubanov, Current state of the theory of polarization of dielectrics, UFN, no. 24, pp. 68–121 (1940) [CrossRef] [Google Scholar]
  13. G.A. Melnikov, N.M. Ignatenko, V.G. Melnikov, E.N. Cherkasov, O.A. Manzhos, The Structure of Small Cluster and IR Spectrum Condensed Matters, Journal of Nanoand Electronic Physics, v. 7(4), pp. 04087 (3p.) (2015) [Google Scholar]
  14. Ding Y., et all, Journal of Computational Chemistry, v. 29(2), pp. 275 (2007) [CrossRef] [Google Scholar]
  15. G.A. Melnikov, N.M. Ignatenko, V.M. Paukov, V.V. Suchilkin, Modeling of dimeric formations of benzene, Physico-mathematical modeling of systems. Materials of the XIX International seminar (VSTU, Voronezh, 2018) [Google Scholar]
  16. O. Echt, O. Kandler, T. Leisner, W. Miehle, E. Recknagel, Magic numbers in mass spectra of large van der Waals cluster, J. Chem. Soc. Faraday Trans., v. 86, pp. 2411 (1990) [CrossRef] [Google Scholar]
  17. The Fibonacci Association, URL : http://www.mscs.dal.ca/Fibonacci/ [Google Scholar]
  18. The Fibonacci Quarterly, URL : http://www.fq.math.ca/ [Google Scholar]
  19. J.E. Bertie, C.D. Keefe, Infrared intensities of liquids XXIV: optical constants of liquid benzene-h6 at 25C extended to 11.5 cm-1 and molar polarizabilities and integrated intensities of benzene-h6 between 6200 and 11.5 cm-1, Journal of Molecular Structure, v. 695–696, pp. 39–57, (2004) [Google Scholar]
  20. R. Chelli, G. Cardini, P. Procacci, at al., Simulated structure, dynamics, and vibrational spectra of liquid benzene, J. Chem. Phys., v. 113(16), pp. 6851 (2000) [CrossRef] [Google Scholar]
  21. S. Badoglu, S. Yurdakul, FT-IR Spectroscopic and DFT Compu rational Study on Solvent Effects on S-Hydroxy-2-Quinolinecarboxylic Acid, Optics and spectroscopy, v. 118(3), pp. 385 (2015) [CrossRef] [Google Scholar]
  22. G.J. Kearley, M.R. Jonson, J. Tomkinson, Intermolecular interactions in solid benzene, J. Chem. Phys., v. 124, pp. 044514 (2006) [CrossRef] [Google Scholar]
  23. T. Smith, L.V. Slipchenko, M.S. Gordon, Modeling π–π Interactions with the Effective Fragment Potential Method: The Benzene Dimer and Substituents, J. Phys. Chem. A., v. 112, pp. 5286–5294 (2008) [CrossRef] [Google Scholar]
  24. A. Smith, M.S. Gordon, Benzene Pyridine Interactions Predicted by the Effective Fragment Potential Method, J. Phys. Chem. A, v. 115, pp. 4598–4609 (2011) [CrossRef] [Google Scholar]
  25. D. Kim, Theoretical Study of the Formation of Benzene Excimer: Effects of Geometry Relaxation and Spin-state Dependence, Bull. Korean Chem. Soc., v. 35(9), 2014. http://dx.doi.org/10.5012/bkcs.2014.35.9.2738 [Google Scholar]
  26. Y. Ding, Y. Mei, J.Z.H. Zhang, Fu-Ming Tao, Efficient bond function basis set for π-π interaction energies, Journal of Computational Chemistry, v. 29(2), pp. 275–279, (2007), DOI 10.1002/jcc.20788 [CrossRef] [Google Scholar]
  27. D.Yu. Dubov, A.A. Vostrikov, The absorption cross section of far infrared radiation by clustered water vapor, Letters in ZhTF, v. 36(4), pp. 54–60 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.