Issue |
MATEC Web Conf.
Volume 344, 2021
International Scientific and Practical Conference “Modern Problems and Directions of Development of Metal Science and Heat Treatment of Metals and Alloys, Dedicated to the Memory of Academician A. A. Baykov” (MPM 2021)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/matecconf/202134401009 | |
Published online | 01 October 2021 |
Peculiarities of quasicrystalline films formation processes on crystal surface under irradiation with proton-ion flows
Southwest State University, 305040 Kursk, Russia
* Corresponding author: melnikovga@mail.ru
Quasicrystalline film with densest package of atoms can be formed on a crystal surface under irradiating crystal surface with protonion flows at a certain ratio of atoms diameters of irradiated crystal and the ions of irradiating flow. Atom-free area of 1 Å order is formed. These are traps for protons from the irradiation stream, thus a quantum dot appears. Atomic package of quasicrystalline film is a package of equilateral Penrose rhombs and there are centers of atoms mass at the vertices. A mathematical relation is obtained that allows predicting radii of irradiation flux ions to form quasicrystalline film and select atomic composition of the obtained film with predetermined properties. Nanostructuring of materials is an entire family of physicochemical processes associated with proton transfer and their localization in crystal lattice and these include ion exchange, diffusion, and ion implantation. Ion and proton exchange can be considered an established universal method of surface modification technology [24– 26]. The case of implantation of protons into the structure of cluster systems formed on the surface of crystals is described in this paper. In this case, a quantum dot is formed in the cluster structure, which is a potential hole with quantized proton motion, wherein the radiation of quantum dot is in IR area of electromagnetic spectrum.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.