Open Access
Issue
MATEC Web Conf.
Volume 339, 2021
International Conference on Sustainable Transport System and Maritime Logistics (ISTSML 2021)
Article Number 01015
Number of page(s) 13
DOI https://doi.org/10.1051/matecconf/202133901015
Published online 02 July 2021
  1. IMO. Framework for the Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface Ships (MASS). MSC 100/20/Add.1, Annex 2. 2018. [Google Scholar]
  2. Kupraty, O.G. (2020). Mathematical modeling trajectory of a ship as a control object in global planning. Transport development, 1(6). 40–55. https://doi.org/10.33082/td.2020.1-6.04 [Google Scholar]
  3. IMO. Code on Alerts and Indicators. (2009). A.1021(26). [Google Scholar]
  4. IMO. Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGSs), consolidated edition 2018, amended in 2010, 2016. [Google Scholar]
  5. IMO. Revised Maritime Policy and Requirements for a Future Global Navigation Satellite System (GNSS). (2001). A.915(22). [Google Scholar]
  6. IMO (2014). SOLAS Consolidated Edition, 2014 (IF110E). [Google Scholar]
  7. Yokoyama, Akira. (1981). Control system for unmanned sailing ship. https://worldwide.espacenet.com [Google Scholar]
  8. Ding Fuguang, Liu Xiangbo, Wang Chenglong, Wang Yuanhui, & Zhang Zhaoqing (2018). Unmanned ship route optimization method based on environment forecast information. [Google Scholar]
  9. Chen Qichang, Huang Zejia, Lin Yuanping, Liu Peiheng, & Ouyang Quanjie (2015). Cruise control method and system of unmanned ship. https://worldwide.espacenet.com/patent/search/family/054714755/publication/CN105129064A?q=CN105129064 [Google Scholar]
  10. Katsman, F.M. (2006). Avarijnost morskogo flota i problemy’ bezopasnosti sudokhodstva. Transport Rossijskoj Federaczii, 5, 82–84 [Google Scholar]
  11. Liberman, A.N. (2006). Tekhnogennaya bezopasnost: chelovecheskij faktor. SPb.: Izdvo VIS. [Google Scholar]
  12. Rodriguez, J.L. (2011). Legal gaps relating to labour safety and health in the maritime transport sector in Spain. Int. Marit.Health, 62(2), 91–97. [Google Scholar]
  13. Galiev, Sh.I. (2005). Diskretnaya matematika. Kazanskij Gosudarstvenny’j tekhnicheskij universitet imeni I. N.Τοpoleva, Kazan. [Google Scholar]
  14. Demin, S.I., Zhukov, E.I., & Kubachev, N.A. (1991). Upravlenie sudnom. Izd. Transport. Moskwa. [Google Scholar]
  15. Petrov, I. M., Rudnichenko, N. D., Kupraty, O. G. (2020). Specificity Of Using Modern Information Technologies In Service Ergatic Systems On Marine Transport. XXXIX International Scientific and Practical Internet Conference Modern vector of science development, 19–22. [Google Scholar]
  16. Kupraty, O. (2020). Implementation of the algorithm for calculation course (bearing) on rhumb line and constructing the trajectory of the ship’s turning circle in the MATLAB programming environment. The scientific heritage. (Budapest, Hungary), 1,(60), 40—45. https://doi.org/10.24412/9215-0365-2021-60-1-40-45 [Google Scholar]
  17. Kupraty, O.G. (2020). Elaboration of empirical formulas for constructing the trajectory of the vessel’s turning circle and calculating the geographical coordinates of the vessel’s gravity center when turning. The 10th International scientific and practical conference “Priority Areas of Science Research. Primedia E-launch LLC, USA, Washington. 14–21. [Google Scholar]
  18. Kupraty, O.G. (2020). Nadi’jni’st’ roboty sudnovodi’ya yak upravlyayuchogo pristroyu na sudni. The 3rd International scientific and practical conference, - World science: problems, prospects and innovations, 669–771. [Google Scholar]
  19. Garbacz, M. (2006). Planowanie ścieżki dla robota mobilnego na podstawie czujników odległościowych” Automatyka 2006, 10(3), Akademia Górniczo-Hutnicza, Krakow. [Google Scholar]
  20. Lisowski, J. (2015). Podstawy automatyki, Akademia Morska w Gdyni. [Google Scholar]
  21. Maltsev, A.S. (2005). Manevrirovanie sudov pri raskhozhdenii, Odessa. [Google Scholar]
  22. Tchoń, K., Mazur, A., Hossa, R., Dulęba, I., Muszyński, R. (2000). Manipulatory i roboty mobilne, Modele planowanie ruchu sterowanie. Robotyka, Warszawa.. [Google Scholar]
  23. International Transport Workers’ Federation (2020). ITF ILO Minimum Wage Scale Using Joint ITF/ISF Interpretation of the ILO Recommended Minimum Wage for an AB - extrapolated on basis of ITF Standard Agreement Differentials Rates applicable from 1st January 2020. [Google Scholar]
  24. Chizhiumov, S.D. (2007). Osnovy’ gidrodinamiki: uchebnoe posobie GOUVPO «KNAGTU». [Google Scholar]
  25. Morgas, W., & Kopacz, Z. (2013). Rhumb-Line Sailing by compution. VERSITA, Reports on Geodesy, 94, 14 ̶ 26. https://doi.org/10.2478/rgg-2013-0003 [Google Scholar]
  26. Ślączka, W., & Guziewicz, J. (1997). Metody wyznaczania obszaru manewrowania statku stosowane w badaniach symulacyjnych. VII Międzynarodowa Konferencja Naukowo-Techniczna Inżynierii Ruchu Morskiego. Szczecin. 125–142. [Google Scholar]
  27. Tijardović, I. (2000). Rhumbline Distances. The Journal of Navigation, 53(1), 187–191. [CrossRef] [Google Scholar]
  28. Vilskiy, G. B, Maltsev, A.S., Bezdolny, V.V., Gonczarov, E.I. (2007). Navigaczionnaya bezopasnost’ pri loczmanskoj provodke sudov. Odessa-Nikolaev: Feniks. [Google Scholar]
  29. GIS-Lab (n.d.). https://gis-lab.info/qa/angles-rhumb.html [Google Scholar]
  30. Neumann, S, Varbanets, R, Kyrylash, O, Maulevych, V, & Yeryganov, O. (2019). Marine diesels working cycle monitoring on the base of IMES GmbH pressure sensors data. Diagnostyka, 20(2). 21–26. https://doi.org/10.29354/diag/104516 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.