Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 04011
Number of page(s) 8
Section Tailings and Waste Disposal
Published online 26 April 2021
  1. Brazilian Mining Institute – IBRAM (2017). Anual report of activities. Brazilian Mining Association. Belo Horizonte, 2017. [Google Scholar]
  2. A. Zhouri (2017). Mining, violence and resistance. An open field to knowledge development in Brazil. ed 1st. Marabá, PA. Iguana editorial. [Google Scholar]
  3. E. S. Presotti (2002). The iron content influence on iron ore tailings resistance parameters. essay, UFOP, Ouro Preto, MG, Brasil. [Google Scholar]
  4. R. Chammas (2018). [personal message]. Received by <> on December 2nd of 2018. [Google Scholar]
  5. T. J. Espósito (2000). Observational and probabilistic methodology applied to tailings dams raised on hidraulic landfill. essay, Civil and Enviromental Engineering Department, Universidade de Brasília, Brasília, DF, 363. [Google Scholar]
  6. E. L. Pereira (2005). Potential liquefaction study on iron ore tailings under static loading. essay, UFOP, Ouro Preto, MG, Brasil. [Google Scholar]
  7. H. P. G. Motta (2008). Transitional tailing behaviour on geotechnical centrifuge. essay, Coppe/URFJ, Rio de Janeiro, RJ, Brasil. [Google Scholar]
  8. V. A. Rezende (2013). Study on a sandy tailing dam behaviour raised with the upstream method. essay, Nugeo/UFOP, Ouro Preto, MG, Brasil. [Google Scholar]
  9. G. D. Fredlund & H. Rahardjo (1993). Soil mechanics for unsaturated soils. John Wiley & Sons. [Google Scholar]
  10. J. C. De Carvalho, G. De F. N. Gitirana Jr., S. L. Machado, M. M. dos A. Mascarenha, F. C. Silva Filho (2015). (Org). Solos Não Saturados no Contexto Geotécnico. ABMS. [Google Scholar]
  11. ABNT– Associação Brasileira de Normas Técnicas (1991). NBR 12069/1991: Soil – In situ cone penetration test (cpt) – Test methodology. Rio de Janeiro. [Google Scholar]
  12. P. K. Robertson & Cabal (2015). Guide to cone penetration testing for geotechnical engineering. Gregg drilling & testing inc. ed 6th. Singal Hill, California. [Google Scholar]
  13. C. R. I. Clayton, M. C. Matthews, N. E. Simons (1995). Site investigation. Department of civil engineering, University of Surrey. ed 2nd. [Google Scholar]
  14. F. Schnaid & E. Odebrecht (2012). Field tests and their application to foundation engineering. ed 2nd. Oficina de Textos editor, São Paulo. [Google Scholar]
  15. A. F. G. Afonso (2016). Correlation between dynaminc penetration test and cone penetration test. 121. Essay (masters on construction engineering) - Escola Superior de Tecnologia e Gestão of the Instituto Politécnico de Bragança, Bragança. [Google Scholar]
  16. ABNT – Associação Brasileira de Normas Técnicas (2001). NBR 6484/2001: Soil – Simple recognition drilling with SPT – Test methodology. Rio de Janeiro. [Google Scholar]
  17. P. W. Mayne, B. Christopher, J. Dejong (2002). Subsurface investigations – geotechnical site characterization, no. FHWA NHI-01-031. Washington, D.C.: Federal road administration, USA. Transport department. [Google Scholar]
  18. B. M. Das (2011). Geotechnical engineering elements. Thomson learning. ed. 6th. São Paulo, SP. [Google Scholar]
  19. B. A. Rigueira et al. (2015). Deformation and resistance parameters obtaining for a foundation soil from field and laboratory tests, with emphasis on the Ménard pressuremeter. 149. Research project (civil engineering bachelor) – Pontifícia Universidade Católica of Minas Gerais, Belo Horizonte. [Google Scholar]
  20. C. De S. Pinto (2006). Soil mechanics basic course: in 16 classes. Oficina de Textos. ed 3rd. São Paulo, SP. [Google Scholar]
  21. N. C. S. T. Passos (2009). Tailing dam: Geotechnical parameters evaluation on iron ore tailings from field tests – a case study. Curitiba, UFPR. (final course essay on civil engineering bachelor). [Google Scholar]
  22. C. E. S. A. Filho (2010). Correlations for obtaining geotechnical parameters of compressible clays using light dynamic penetrometer. 127. Essay (mesters on geotechnics) – Universidade Federal de Ouro Preto, Ouro Preto. [Google Scholar]
  23. M. Marangon (2006). Geotechnical and earth works topics – volume 1. Class notes on UFJF’s civil engineering course. Juiz de Fora, MG. [Google Scholar]
  24. K. Terzaghi & R. B. Peck (1967). Soil mechanics in engineering practice. John Wiley e Sons. ed 2nd. New York, NY. [Google Scholar]
  25. J. P. S. Silva (2014). Flow regime influence evaluation for the geotechnical behaviour in an upstream tailing dam. São Paulo, USP. (masters’ essay on civil engineering). [Google Scholar]
  26. A. H. Teixeira & N. S. Godoy (1996). Analysis, project and execution on shallow foundations. In: Hachich et al. eds. Foundations: theory and practice. São Paulo, PINI. 7, 227-264. [Google Scholar]
  27. T. Muromachi (1974). Phono-soundings apparatus-discrimination of soil type by sound. Amsterdam, ESOPT-1. 2:1, 110-112. [Google Scholar]
  28. M. Hatanaka & A. Uchida (1996). Empirical correlation between penetration resistance and internal friction angle of sandy soils. Soils and foundations, vol. 36, no. 4, 1-9. [Google Scholar]
  29. J. Sosnoski (2016). CPTu and DMT interpretation for intermediate permeability soils. 137. Essay (postgraduate in civil engineering) – Universidade Federal do Rio Grande do Sul, Porto Alegre. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.