Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 04012
Number of page(s) 8
Section Tailings and Waste Disposal
DOI https://doi.org/10.1051/matecconf/202133704012
Published online 26 April 2021
  1. R.J. Chandler and G. Tosatti (1995). The Stava dams failure, Italy, July, 1985. Proceedings of the Institution of Civil Engineers, 113, 67–79. [Google Scholar]
  2. L.F. Harder and J.P. Stewart (1996). Failure of Tapo Canyon Tailings Dam. J. Perform. Constr. Facil. ASCE, 10: 3, 109–114. [Google Scholar]
  3. G.E. Bligth (1997). Destructive mudflows as a consequence of tailing dyke failures. Proceedings of the Institution of Civil Engineers, 125, 9–18. [Google Scholar]
  4. A.B. Fourie, G.E. Blight, G. Papageorgiou (2001). Static liquefaction as a possible explanation for the Merriespruit tailings dam failure. Can. Geotech. J. 38, 707–719. [Google Scholar]
  5. E.E. Alonso and A. Gens (2006). Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique, 56: 3, 165–183. [Google Scholar]
  6. L. Oldecop y R. Rodríguez (2006). Estabilidad y seguridad de depósitos de residuos mineros. Los residuos minero-metalúrgicos en el medio ambiente. Editorial Instituto Geológico y Minero de España, 197–244. [Google Scholar]
  7. J.D. Bray and J.D. Frost (2010). Geo-Engineering Reconnaissance of the 2010 Maule, Chile Earthquake, a report of the NSF-sponsored GEER Association Team. http://www.geerassociation.org/. [Google Scholar]
  8. IEEIRP (2015) Report on Mount Polley Tailings Storage Facility Breach. Independent Expert Engineering Investigation and Review Panel. January 30, 2015. [Google Scholar]
  9. N.R. Morgenstern, S.G. Vick, C.B. Viotti, B.D. Watts (2016). Fundão Tailings Dam Review Panel. Report on the Immediate Causes of the Failure of the Fundão Dam. [Google Scholar]
  10. ICOLD (2001) Tailings dams risk of dangerous occurrences, lessons learnt from practical experiences. Bulletin 121, United Nations Environmental Programme (UNEP) Division of Technology, Industry and Economics (DTIE) and International Commission on Large Dams (ICOLD), Paris, 2001. [Google Scholar]
  11. M.P. Davies (2002). Tailings Impoundment Failures: Are Geotechnical Engineers Listening? Geotech. News, 20, 31–36. [Google Scholar]
  12. G.E. Bligth and A.B. Fourie (2005). Catastrophe revisited – disastrous flow failures of mine and municipal solid waste. Geotech. Geol. Eng. 23, 219–248. [Google Scholar]
  13. M. Rico, G. Benito, A.R. Salgueiro, A. Díez-Herrero, H. G. (2008). Reported tailings dam failures - A review of the European incidents in the worldwide context. J. Hazard. Mater. 152, 846–852. [Google Scholar]
  14. L. Oldecop, F. Zabala, R. Rodríguez, L. Garino (2008). Funcionamiento hidráulico, estabilidad y mecanismos de rotura de presas de relaves mineros. Proceeding of V Congreso Argentino de Presas y Aprovechamientos Hidroeléctricos. Tucumán, Argentina. [Google Scholar]
  15. L.N. Bowker and D.M. Chambers (2015). The Risk, Public Liability, and Economics of Tailings Storage Facility Failures. Earthwork Act, 1–56. [Google Scholar]
  16. C. Roche, K. Thygesen, E. Baker (2017). Mine Tailings Storage: Safety Is No Accident. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal, www.grida.no. [Google Scholar]
  17. R. Verdugo, N. Sitar, J.D. Frost, J.D. Bray, G. Candia, T. Eldridge, Y. Hashash, S.M. Olson, A. Urzua (2012). Seismic Performance of Earth Structures during the February 2010 Maule, Chile, Earthquake: Dams, Levees, Tailings Dams, and Retaining Walls. Earthq. Spectra 28, 75–96. [Google Scholar]
  18. P.K. Robertson, L. de Melo, D.J. Williams, G. Ward Wilson (2019). Report of the expert panel on the technical causes of the failure of Feijão Dam I. 12 December, 2019. [Google Scholar]
  19. M. T. Zandarín, L. Oldecop, R. Rodríguez, F. Zabala (2009). The role of capillary water in the stability of tailing dams. Eng Geol. 105: 1–2, 108-118. [Google Scholar]
  20. R. Gramage (1983). Estudio geológico minero de las vetas Compañía y Flor de Castaño, Distrito Minero Castaño Viejo, Pcia. de San Juan. Trabajo Final de la Carrera Licenciatura en Ciencias Geológicas. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de San Juan, Argentina. [Google Scholar]
  21. M. Ramírez, L. Salinas, H. Carrascosa, M. Negrelli (2002). Caracterización y evaluación de las presas mineras del Distrito Castaño Viejo, Calingasta, San Juan. Proceeding of II Congreso Argentino de Presas y Aprovechamientos Hidroeléctricos, San Juan, Argentina. [Google Scholar]
  22. L. Garino, G. Rodari, L. Oldecop. (2017). Characterization of mine waste materials after 50 years of climate interaction. Proceeding of Second Pan-American Conference on Unsaturated Soils, Dallas, United States. [Google Scholar]
  23. W.A. Dorigo, A. Xaver, M. Vreugdenhil, A. Gruber, A. Hegyiová, A. D. Sanchis-Dufau, D. Zamojski, C. Cordes, W. Wagner, M. Drusch (2013). Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. 12: 3. [Google Scholar]
  24. R.J. Kapilaratne and M. Lu (2017). Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 551, 203–2016. [Google Scholar]
  25. C. Malmberg and A. Maryott (1956): Dielectric constant of water from 0° to 100°C. J. Res. Natl. Bur. Stand. 56, 1–8. [Google Scholar]
  26. D. Or and J.M. Wraith (1999). Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model. Water Resour. Res. 35, 371–383. [Google Scholar]
  27. M.S. Seyfried and L.E. Grant (2007). Temperature effects on soil dielectric properties measured at 50 MHz. Vadose Zone J. 6, 759–765. [Google Scholar]
  28. L. Walthert and P. Schleppi (2018). Equations to compensate for the temperature effect on readings from dielectric Decagon MPS-2 and MPS-6 water potential sensors in soils. J. Plant. Nutr. Soil Sci. 181, 749–759. [Google Scholar]
  29. R. Rodríguez (2002). Estudio experimental de flujo y transporte de cromo, níquel y magnesio en residuos de la zona minera de Moa (Cuba): influencia del comportamiento hidromecánico. PhD Thesis, Universitat Politècnica de Catalunya, Barcelona. [Google Scholar]
  30. R. Rodríguez y L. Oldecop (2006). Propiedades físicas, mecánicas e hidrogeológicas de los residuos minero-metalúrgicos sólidos. Los residuos minero-metalúrgicos en el medio ambiente. Editorial Instituto Geológico y Minero de España., Madrid, 2006. [Google Scholar]
  31. J.C. Stormont and C.E. Morris (1998). Method to estimate water storage capacity of capillary barriers. J. Geotech. Geoenviron. Eng. 124: 4, 297–302. [Google Scholar]
  32. M.Th. Van Genuchten (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.