Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 04010
Number of page(s) 7
Section Tailings and Waste Disposal
Published online 26 April 2021
  1. IBRAM. (2018). Instituto Brasileiro de Mineração e Economia Mineral do Brasil. Report acess:, acess in 10/09/2020. [Google Scholar]
  2. IPEA. (2012). Instituto de Pesquisa Econômica Aplicada Diagnósticos dos Resíduos Sólidos Urbanos. Research report acess:, acess in 15/08/2020. [Google Scholar]
  3. N. R. Morgenstern, S. G. Vick, C. B. Viotti, B. D. Watts. (2016). Fundão Tailings Dam Review Panel. Report on the Immediate Causes of the Failure of the Fundão Dam. August, 2016. Available from, acess in 6/10/2020. [Google Scholar]
  4. P. K. Robetson, L. De Melo, D. J. Willians, G. W. Wilson. (2019). Report of the Expert Panel on the Technical Causes of the Failure of Feijão Dam I. Available from, acess in 10/10/2020. [Google Scholar]
  5. T. W. Lambe, R. V. Whitman. (1969). Soil Mechanics. John Wiley and Sons. [Google Scholar]
  6. F. Schnaid, B. M. Lehane, M. Fahey. (2005). In situ test characterization of unusual soils. In: Proc. of ISC-2 on Geotech. Geophys. Site Characterization. 1. 49-74. [Google Scholar]
  7. G. Dienstmann, F. Schnaid, S. Maghous, J. Dejong. (2018). Piezocone Penetration Rate Effects in Transient Gold Tailings. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144:2, 04017116. DOI: 10.1061/(ASCE)GT.1943-5606.0001822 [Google Scholar]
  8. J. T. DeJong, M. F. Randolph. (2012). Influence of partial consolidation during cone penetration on estimated soil behavior type and pore pressure dissipation measurements. J. Geotech. Geoenviron. Eng. 138:7, 777–788. DOI: 10.1061/(ASCE)GT.1943-5606.0000646. [Google Scholar]
  9. M. F. Randolph, S. N. Hope. (2004). Effect of cone velocity on cone resistance and excess pore pressure. In: Proc., Int. Symp. on Engineering Practice and Performance of Soft Deposits, Yodogawa Kogisha Co. Ltd., Osaka, Japan, 147–152. [Google Scholar]
  10. K. Kim, M. Prezzi, R. Salgado, W. Lee. (2008). Effect of penetration rate on cone penetration resistance in saturated clayey soils. J. Geotech. Geoenviron. Eng., 134:8, 1142–1153. DOI: 10.1061/(ASCE)1090-0241(2008)134:8(1142) [Google Scholar]
  11. P. K. Robertson. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27:1, 151-158. DOI: 10.1139/t90-014 [Google Scholar]
  12. P. K. Robertson, S. Sasitharan, J. C. Cunning, D. C. Segs. (1995). Shear wave velocity to evaluate flow liquefaction. Journal of Geotech. And Geoenv. Eng., ASCE, 121 (3): 262-273. DOI: 10.1061/(ASCE)0733-9410(1995)121:3(262) [Google Scholar]
  13. T. Lunne, P. K. Robertson, J. J. M. Powell. (1997). Cone Penetration Testing in Geotechnical Practice. E & FN Spon. [Google Scholar]
  14. F. Schnaid. (2009). In Situ Testing in Geomechanics: the main tests. Taylor e Francis, London: 329p. [Google Scholar]
  15. D. W. Hight, V. N. Georgiannou, C. J. Ford. (1994). Characterization of clayey sand. In: Proc. 7th Int. Conf. Of Offshore Structures, USA, 1:321-340. [Google Scholar]
  16. F. Schnaid. (2005). Geocharacterisation and properties of natural soils by in situ tests. In: Proceedings of the International Conf. on Soil Mechanics and Geotech. Eng. AA Balkema Publishers, 16:1, 3. [Google Scholar]
  17. J. A. Schneider, R. E. S. Moss. (2011). Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands. Géotechnique Letters, 1: 31-36. DOI: 10.1680/geolett.11.00021. [Google Scholar]
  18. P. K. Robertson. (2016). Cone Penetration Test (CPT)-Based Soil Behaviour Type (SBT) Classification System - An Update. Canadian Geotechnical Journal, 53: 1910-1927. DOI: 10.1139/cgj-2016-0044. [Google Scholar]
  19. H. P. Nierwinski. (2019) Characterization and Geomechanical Behavior of Mining Tailings. D. Sc. Thesis Department of Civil Engineering, UFRGS, Porto Alegre, Brazil. [Google Scholar]
  20. M. D. Bolton. (1986). The strength and dilatancy of sands. Geotechnique. 36:I, 65-78. DOI: 10.1680/geot.1986.36.1.65. [Google Scholar]
  21. V. F. B. De Mello. (1971). The standard penetration test. Proc. 4th Pan American Conf. Soil Mechs. Found. Eng., San Juan Puerto Rico, ASCE, 1: 1-86. [Google Scholar]
  22. P. W. Mayne. (2006). Undisturbed sand strength from seismic cone tests. 2nd James K. Mitchell Lectcure. J. Geomech. And Geoeng.,1: 4, 249-256. DOI: 10.1080/17486020601035657. [Google Scholar]
  23. F. Schnaid, F., E. Odebrecht. (2012) Ensaios de campo e suas aplicações à Engenharia de Fundações. 2 ed. Oficina de Textos, São Paulo. [Google Scholar]
  24. F. Schnaid, H. S. Yu. (2007). Interpretation of the seismic cone test in granular soils. Géotechnique, 57:3, 265-272. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.