Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 03006
Number of page(s) 8
Section Slopes, Embankments, Roads, and Foundations
DOI https://doi.org/10.1051/matecconf/202133703006
Published online 26 April 2021
  1. K. Terzaghi. (1943). Theoretical soil mechanics. John Wiley and Sons. New York. [Google Scholar]
  2. A. B. Vesic. (1963). Bearing capacity of deep foundations in sand. Washington, D.C., pp. 112–153. [Google Scholar]
  3. J. C. A. Cintra and N. Aoki. (1999). Carga admissível em fundações profundas. EESC/USP. São Carlos. [Google Scholar]
  4. L. D. écourt and A. R. Quaresma. (1978). Capacidade de carga de estacas a partir de valores de SPT. Rio de Janeiro, COBRAMSEG, 6. 1, pp. 45–53. [Google Scholar]
  5. L. Décourt. (1996). A ruptura de fundações avaliada com base no conceito de rigidez. SEFE, São Paulo, 1, pp. 215–224. [Google Scholar]
  6. N. Aoki and D. A. Velloso. (1975). An approximate method to estimate the bearing capacity of piles. Buenos Aires, PASSMFE, 5, pp. 367–374. [Google Scholar]
  7. M. Mokhberi and S. A. Rafieeian. (2019). The piled-raft behavior installed in unsaturated collapsible soils. Arab. J. Geosci., 12, no. 2, p. Article 49. [Google Scholar]
  8. S.-H. Chung and S.-R. Yang. (2017). Numerical Analysis of Small-Scale Model Pile in Unsaturated Clayey Soil. Int. J. Civ. Eng., 15, no. 6, pp. 877–886, doi: 10.1007/s40999-016-0065-7. [Google Scholar]
  9. D. Tjandra, I. Soemitro, and R. A. A. Soemitro. (2014). The Influence of Water Content Variations on Friction Capacity of Piles in Expansive Soil. Int. J. ICT-Aided Archit. Civ. Eng., 1, no. 1, pp. 31–40. [Google Scholar]
  10. M. M. Sales, R. P. Cunha, M. M. Farias, and J. H. F. Pereira. (2001). Efeito da pré-inundação nos resultados de provas de carga de sapatas e estacas na argila porosa de Brasília. Rio de Janeiro, ÑSAT vol. único, pp. 399–416. [Google Scholar]
  11. N. H. M. Gutierrez and A. Belincanta. (2004). Características básicas dos solos constituintes do subsolo da cidade de Maringá: locais de alta e média vertente. Curitiba, GEOSUL 1, pp. 39–46. [Google Scholar]
  12. N. H. M. Gutierrez. (2005). Influências de aspectos estruturais no colapso de solos do norte do Paraná. Universidade de São Paulo - USP, São Carlos, São Paulo, Brazil. [Google Scholar]
  13. Águas Paraná. (2021). Alturas diárias de precipitação (mm). [Online]. Available: http://www.aguasparana.pr.gov.br/pagina-264.html. [Google Scholar]
  14. Associação Brasileira de Normas Técnicas. (2010). ABNT NBR 12131: Estacas – prova de carga estática. ABNT. [Google Scholar]
  15. V. R. Marques. (2017). Uma contribuição ao entendimento da capacidade de carga de estacas escavadas, sem fluido estabilizante, em solo típico da cidade de Maringá/PR. Universidade Estadual de Maringá, Maringá. [Google Scholar]
  16. C. Van der Veen (1953). The Bearing Capacity of a Pile. Zurich, 3rd International Conférence on Soil Mechanics and Foundation Engineering 2, pp. 84–89. [Google Scholar]
  17. R. J. Chandler. (1966). Discussion. ICE Conference on Large Piles Proc., London, pp. 95–97. [Google Scholar]
  18. R. J. Chandler. (1968). The shaft friction of piles in cohesive soils in terms of effective stress. Civ. Eng Public Works Rev. UK, vol. 60, no. 708, Accessed: Feb. 10, 2021. [Online]. Available: https://trid.trb.org/view/121929. [Google Scholar]
  19. J. Burland. (1973). Shaft friction of piles in clay - A simple fundamental approach. Ground Eng., 6, pp. 30–42. [Google Scholar]
  20. J. G. Potyondy. (1961). Skin Friction between Various Soils and Construction Materials. Géotechnique. 11, no. 4, pp. 339–353, doi: 10.1680/geot.1961.11.4.339. [Google Scholar]
  21. C. Zapata. (1999). Uncertainty in soil-water characteristic curve and impacts on unsaturated shear strength predictions. PhD, Arizona State University, Tempe, AZ. [Google Scholar]
  22. C. Zapata. (2000). W. Houston, S. Houston, and K. Walsh. Soil–Water Characteristic Curve Variability, Geo-Denver. 287, p. 124. [Google Scholar]
  23. D. G.. Fredlund and A. Xing. (1994). Equations for the soil-water characteristic curve. Can. Geotech. J., 31, pp. 521–532. [Google Scholar]
  24. S. Vanapalli, K. D. Eigenbrod, Z. N. Taylan, C. Catana, W. Oh, and E. Garven. (2010). A technique for estimating the shaft resistance of test piles in unsaturated soils. 5th International Conference on Unsaturated Soils. 2. doi: 10.1201/b10526-188. [Google Scholar]
  25. S. K. Vanapalli and D. G. Fredlund. (2000). Comparison of Different Procedures to Predict Unsaturated Soil Shear Strength. Advances in Unsaturated Geotechnics, Denver, Colorado, United States, pp. 195–209, doi: 10.1061/40510(287)13. [Google Scholar]
  26. A. Belincanta and C. J. M. C. Branco. (2003). Fundações em Londrina e em Maringá: uma síntese histórica. Maringá, ENGEOPAR 1, pp. 266–278. [Google Scholar]
  27. D. G. Fredlund and N. R. Morgenstern. (1977). Stress state variables for unsaturated soils. J. Geotech. Geoenvironmental Eng., 103, pp. 447–466, 1977. [Google Scholar]
  28. H. Rahardjo, Y. Kim, and A. Satyanaga. (2019). Role of unsaturated soil mechanics in geotechnical engineering. Int. J. Geo-Eng., 10, no. 1, p. 8, Dec. doi: 10.1186/s40703-019-0104-8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.