Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 02011
Number of page(s) 6
Section Constitutive and Numerical Modeling
Published online 26 April 2021
  1. H. Sadeghi, C.F. Chiu, C.W.W. Ng, F. Jafarzadeh. (2020). A vacuum-refilled tensiometer for deep monitoring of in-situ pore water pressure. Scientia Iranica. 27:2, 596-606, doi: 10.24200/sci.2018.5052.1063 [Google Scholar]
  2. H. Sadeghi, & P. AliPanahi. (2020). Saturated hydraulic conductivity of problematic soils measured by a newly developed low-compliance triaxial permeameter. Eng. Geol., 278, 105827. doi: 10.1016/j.enggeo.2020.105827 [Google Scholar]
  3. A. Bazargan, H. Sadeghi, R. Garcia-Mayoral, G. McKay. (2015). An unsteady state retention model for fluid desorption from sorbents. J. Colloid Interface Sci., 450, 127-134, doi: 10.1016/j.jcis.2015.02.036 [Google Scholar]
  4. H. Sadeghi, & H. Nasiri. (2020). Hysteresis of soil water retention and shrinkage behaviour for various salt concentrations. Géotechnique Letters. 11:1, 21-29, doi: 10.1680/jgele.20.00047. [Google Scholar]
  5. A. Kolahdooz, H. Sadeghi, M.M. Ahmadi. (2020). A numerical study on the effect of salinity on stability of an unsaturated railway embankment under rainfall. 4th European Conference on Unsaturated Soils (E-UNSAT 2020), 195 (01004), 1-6, doi: 10.1051/e3sconf/202019501004 [Google Scholar]
  6. A. Ghassemi & A. Pak. (2011). Numerical Study of Factors Influencing Relative Permeabilities of Two Immiscible Fluids Flowing through Porous Media using Lattice Boltzman Method. J. Petrol Sci. Eng., 77, 135-145, doi: 10.1016/j.petrol.2011.02.007 [Google Scholar]
  7. A. Ghassemi & A. Pak. (2011). Pore Scale Study of Permeability and Tortuosity for Flow through Particulate Media Using Lattice Boltzman Method. Int. J. Numer. Anal. Methods Geomech., 35, 886-901, doi: 10.1002/nag.932 [Google Scholar]
  8. D.H. Rothman & J.M. Keller. (1988). Immiscible cellular-automaton fluids. J. Stat. Phys., 52:3-4, 1119-1127, doi: 10.1007/BF01019743 [Google Scholar]
  9. A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti. (1991). Lattice Boltzmann model of immiscible fluids. Phys. Rev. A, 43:8, 4320-4327, doi: 10.1103/PhysRevA.43.4320 [Google Scholar]
  10. X. Shan & H. Chen. (1993). Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E, 47:3, 1815-1819, doi: 10.1103/PhysRevE.47.1815 [Google Scholar]
  11. M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans. (1996). Lattice Boltzmann simulation of liquid-gas and binary fluid systems. Phys. Rev. E, 54:5, 5041-5052, doi: 10.1103/PhysRevE.54.5041 [Google Scholar]
  12. S. Leclaire, M. Reggio, J.Y. Trepanier. (2011). Isotropic color gradient for simulating very high-density ratios with a two-phase flow lattice Boltzmann model. Comput. Fluids, 48:1, 98-112, doi: 10.1016/j.compfluid.2011.04.001 [Google Scholar]
  13. S. Leclaire, M. Reggio, J.Y. Trepanier. (2012). Numerical Evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. Appl. Math. Model., 36, 2237-2252, doi: 10.1016/j.apm.2011.08.027 [Google Scholar]
  14. M. Latva-Koko & D.H. Rothman. (2005). Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E, 72:4, 046701, doi: 10.1103/PhysRevE.72.046701 [Google Scholar]
  15. M.C. Sukop & D.T. Thorne. (2006). Lattice Boltzmann Modeling: An Introduction for geoscientists and engineers (Springer, Heidelberg, Berlin, New York) [Google Scholar]
  16. R. Machado. (2012). On pressure and corner boundary conditions with two lattice Boltzmann construction approaches. Math. Comput. Simul., 84, 26-41, doi: 10.1016/j.matcom.2012.08.002 [Google Scholar]
  17. M Sadeghi, A. Pak, H. Sadeghi. (2019). Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method. The 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering (16ARC), Oct. 2019, Taipei, Taiwan. [Google Scholar]
  18. T. Reis & T.N. Phillips. (2007). Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A Math. Theor., 40:14, 1151-1173, doi: 10.1088/1751-8113/40/14/018 [Google Scholar]
  19. M. Sadeghi. (2013). Evaluation of efficiency of RK chromodynamic model for simulation of two-fluid flow in porous media. MSc Thesis, Sharif University of Technology. [Google Scholar]
  20. R. Lenormand, C. Zarcone, A. Sarr. (1983). Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech., 135, 337-353, doi: 10.1017/S0022112083003110 [Google Scholar]
  21. A. Pak & B. Sheikh. (2013) Study of Relative Permeability Variation During Unsteady Flow in Unsaturated Reservoir Rock Using Lattice Boltzmann Method. Proc. 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris. [Google Scholar]
  22. E.P. Montellà, C. Yuan, B. Chareyre, A. Gens. (2020). Modeling multiphase flow with a hybrid model based on the Pore-network and the lattice Boltzmann method. 4th European Conference on Unsaturated Soils (E-UNSAT 2020), 195, (02009), doi: 10.1051/e3sconf/202019502009 [Google Scholar]
  23. C. Obrecht, F. Kuznik, B. Tourancheau, J. Roux. (2013). Scalable lattice Boltzmann solvers for CUDA GPU clusters. Parallel Computing., 39:6-7, 259-270, doi: 10.1016/j.parco.2013.04.001 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.