Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 02006
Number of page(s) 7
Section Constitutive and Numerical Modeling
Published online 26 April 2021
  1. J. Engel, T. Schanz, C. Lauer (2005). State parameters for unsaturated soils, basic empirical concepts. In Schanz, T. editor, Unsaturated Soils: Numerical and Theoretical Approaches, 125–138, Springer-Verlag Berlin Heidelberg. [Google Scholar]
  2. Y. Lins, Y. Zou, T. Schanz (2007). Physical modeling of SWCC for granular materials. In Schanz, T. editor, Theoretical and Numerical Unsaturated Soil Mechanics, Springer-Verlag Berlin Heidelberg. [Google Scholar]
  3. K.K. Muraleetharan, C. Liu, C. Wei, T.G.C. Kibbey, L. Ghen (2009). An elastoplastic framework for coupling hydraulic and mechanical behavior of unsaturated soils. International Journal of Plasticity, 25(3), 473–490. doi: 10.1016/j.ijplas.2008.04.001. [CrossRef] [Google Scholar]
  4. D.A. Sun, D.C. Sheng, H.B. Cui, S.W. Sloan (2007). A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils. International Journal for Numerical and Analytical Methods in Geomechanics, 31(11), 1257–1279. doi: 10.1002/nag.579. [CrossRef] [Google Scholar]
  5. E. Romero (1999). Characterisation and thermo-mechanical behavior of unsaturated Boom clay: An experimental study. PhD Thesis, UPC, Barcelona. [Google Scholar]
  6. A. Tarantino (2009). A water retention model for deformable soils. Géotechnique, 59(9), 751–762. doi: 10.1680/geot.7.00118. [CrossRef] [Google Scholar]
  7. S. Vanapalli, D.G. Fredlund, D.E. Pufahl, A.W. Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33(3), 379–392. doi: 10.1139/t96–060. [CrossRef] [Google Scholar]
  8. A. Uchaipichat & N. Khalili (2009). Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt. Géotechnique, 59(4), 339–353. doi: 10.1680/geot.2009.59.4.339. [CrossRef] [Google Scholar]
  9. N. Lu & W.J. Likos (2004). Unsaturated soil mechanics. John Wiley & Sons, Inc. ISBN 978–0–471–44731–3. [Google Scholar]
  10. E.H. Brooks & A.T. Corey (1964). Hydraulic properties of porous media. Technical Report 3, Colorado State University, Fort Collins, Colorado. [Google Scholar]
  11. M.T. van Genuchten (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. doi: 10.2136/sssaj1980.03615995004400050002x. [CrossRef] [Google Scholar]
  12. D.G. Fredlund & A. Xing (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. doi: 10.1139/t94–061. [CrossRef] [Google Scholar]
  13. W.S. Sillers & D.G. Fredlund (2001). Statistical assessment of soil-water characteristic curve models for geotechnical engineering. Canadian Geotechnical Journal, 38(6), 1297–1313. doi: 10.1139/t01–066. [CrossRef] [Google Scholar]
  14. W.S. Sillers, D.G. Fredlund, N. Zakerzadeh (2001). Mathematical attributes of some soil-water characteristic curve models. Geotechnical and Geological Engineering, 19(3–4), 243–283. doi: 10.1023/a:1013109728218. [CrossRef] [Google Scholar]
  15. E.C. Leong & H. Rahardjo (1997). Review of soil-water characteristic curve equations. Journal of Geotechnical and Geoenvironmental Engineering, 123(12), 1106–1117. doi: 10.1061/(asce)1090–0241(1997)123:12(1106). [Google Scholar]
  16. S.J. Wheeler, R.S. Sharma, M.S.R Buisson (2003). Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Géotechnique, 53(1), 41–54. doi: 10.1680/geot.2003.53.1.41. [CrossRef] [Google Scholar]
  17. R. Tamagnini (2004). An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 54(3), 223–228. doi: 10.1680/geot.2004.54.3.223. [CrossRef] [Google Scholar]
  18. X.S. Li (2005). Modelling of hysteresis response for arbitrary wetting/drying paths. Computers and Geotechnics, 32(2), 133–137. doi: 10.1016/j.compgeo.2004.12.002. [CrossRef] [Google Scholar]
  19. D.M. Pedroso & D.F. Williams (2010). A novel approach for modelling soil-water characteristic curves with hysteresis. Computers and Geotechnics, 37(3), 374–380. doi: 10.1016/j.compgeo.2009.12.004. [CrossRef] [Google Scholar]
  20. N. Khalili, M.A. Habte, S. Zargarbashi (2008). A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hystereses. Computers and Geotechnics, 35(6), 872–889. doi: 10.1016/j.compgeo.2008.08.003. [CrossRef] [Google Scholar]
  21. H.Q. Pham, D.G. Fredlund, S.L. Barbour (2005). A study of hysteresis models for soil-water characteristic curves. Canadian Geotechnical Journal, 42(6), 1548–1568. doi: 10.1139/t05–071. [CrossRef] [Google Scholar]
  22. D. Gallipoli, S. Wheeler, M. Karstunen (2003). Modelling the variation of the degree of saturation in a deformable unsaturated soil. Géotechnique, 53(1), 105–112. doi: 10.1680/geot.2003.53.1.105. [CrossRef] [Google Scholar]
  23. S. Salager, M. Nuth, A. Ferrari, L. Laloui (2013). Investigation into water retention behaviour of deformable soils. Canadian Geotechnical Journal, 50(2), 200–208. doi: 10.1139/cgj-2011–0409. [CrossRef] [Google Scholar]
  24. D. Gallipoli, A.W. Bruno, F. D’Onza, C. Mancuso (2015). A bounding surface hysteretic water retention model for deformable soils. Géotechnique, 65(10), 793–804. doi: 10.1680/geot.14.P.118. [CrossRef] [Google Scholar]
  25. D. Sun, D. Sheng, L. Xiang, S.W. Sloan (2008). Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions. Computers and Geotechnics, 35(6), 845–852. doi: 10.1016/j.compgeo.2008.08.002. [CrossRef] [Google Scholar]
  26. W. Arairo, F. Prunier, I. Djéran-Maigre, F. Darve (2013). A new insight into modelling the behaviour of unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 37(16), 2629–2654. doi: 10.1002/nag.2151. [CrossRef] [Google Scholar]
  27. T. Sakaki, M. Komatsu, R. Takeuchi (2016). Extending water retention curves to a quasi-saturated zone subjected to a high water pressure up to 1.5 megapascals. Vadose Zone Journal, 15(8), -. doi: 10.2136/vzj2015.12.0165. [CrossRef] [Google Scholar]
  28. C. Pereira (2020). Formulation of an advanced effective stress based constitutive model for unsaturated soils. PhD Thesis, Universidade de Lisboa, Instituto Superior Técnico, Lisbon, Portugal [Google Scholar]
  29. M. Nuth & L. Laloui (2008). Advances in modelling hysteretic water retention curve in deformable soils. Computers and Geotechnics, 35(6), 835–844. doi: 10.1016/j.compgeo.2008.08.001. [Google Scholar]
  30. T. Sugii, K. Yamada, T. Kondou (2002). Relationship between soil-water characteristic curve and void ratio. In Jucá, J. F. T., de Campos, T. M. P., Marinho, F. A. M. editors, Unsaturated Soil. Proceedings: 3rd International Conference on Unsaturated Soils (UNSAT 2002), Recife, Brazil, A. A. Balkema. [Google Scholar]
  31. D.A. Sun, D. C. Sheng, H.B. Cui, S.W. Sloan (2007). A density-dependent elastoplastic hydro-mechanical model for unsaturated compacted soils. International Journal for Numerical and Analytical Methods in Geomechanics, 31(11), 1257–1279. doi: 10.1002/nag.579. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.