Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 02004
Number of page(s) 8
Section Constitutive and Numerical Modeling
Published online 26 April 2021
  1. Y. Yoshimi & K. Tokimatsu. (1977). Settlement ofBuildings on Saturated Sand During Earthquakes. SoilsFound. 17: 23–38. doi:10.3208/sandf1972.17.23. [Google Scholar]
  2. M. Yasui. (1992). Settlement and inclination ofreinforced concrete buildings in Dagupan City due toliquefaction during the 1990 Philippine earthquake. In:CRC Press, editor. [Google Scholar]
  3. M. Cubrinovski, R. Green, J. Allen, S. Ashford, E.Bowman, BA. Bradley, et al. (2010). Geotechnicalreconnaissance of the 2010 Darfield (New Zealand)earthquake. University of Canterbury. Civil and NaturalResources Engineering University of Canterbury.Geological Sciences. [Google Scholar]
  4. M. Cubrinovski & I. McCahon. (2012). Short termrecovery project 7: CBD foundation damage. Nat HazardsRes Platform, Univ Canterbury, Christchurch, New Zeal. [Google Scholar]
  5. RB. Seed, KO. Cetin, RES. Moss, AM. Kammerer, J. Wu, JM. (2003). Pestana, et al. Recent Advances in SoilLiquefaction Engineering : a Unified and Consistent Framework. Proc. 26th Annu. ASCE Los AngelesGeotech. Spring Semin., Long Beach, CA., 1–72.doi:EERC 2003–06. [Google Scholar]
  6. T. Khodadadi & H. Bilsel. (2012). Application ofmicroorganisms for improvement of liquefiable sand. 3rdInt. Conf. new Dev. soil Mech. Geotech. Eng., Nicosia, North Cyprus. 857–863. [Google Scholar]
  7. MK. Yegian, E. Eseller-Bayat, A. Alshawabkeh, S. Ali. (2007). Induced-partial saturation for liquefactionmitigation: experimental investigation. J GeotechGeoenvironmental Eng. 133:372–380. doi:10.1061/(ASCE)1090–0241(2007)133:4(372). [Google Scholar]
  8. M. Ishihara, M. Okamura, T Oshita. (2003). Desaturating sand deposit by air injection for reducingliquefaction potential. Proc. 2003 Pacific Conf. Earthq.Eng., Tsukuba City, Japan. [Google Scholar]
  9. JC. Santamarina, KA. Klein, MA. (2001). Soils andwaves. J. Wiley & Sons. [Google Scholar]
  10. M. Okamura & Y. Soga. (2006). Effects of porefluid compressibility on liquefaction resistance of partially saturated sand. Soils Found. 46:695–700.doi:10.3208/sandf.46.695. [Google Scholar]
  11. E. Eseller-bayat, MK. Yegian, A. Alshawabkeh. (2013). Liquefaction Response of Partially SaturatedSands. I : Experimental Results. J Geotech Geoenvironmental Eng. 139:863–871. doi: 10.1061/(ASCE)GT.1943–5606.0000815. [Google Scholar]
  12. J. He, J. Chu, V. Ivanov. (2013). Mitigation ofliquefaction of saturated sand using biogas. Géotechnique. 63:267–275.doi:10.1680/geot.SIP13.P.004. [Google Scholar]
  13. A. Zeybek, SPG. Madabhushi. (2017). Centrifugetesting to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bull Earthq Eng. 15:339–356. doi:10.1007/s10518–016–9968–6. [Google Scholar]
  14. PDE Solutions Inc. (2005). FlexPDE Users Guide. PDE Solution Inc. [Google Scholar]
  15. KR. Reddy & JA. Adams. (2001). Cleanup of Chemical Spills Using Air Sparging. Chapter, 14, p. 14.1–14.29. [Google Scholar]
  16. A. Zeybek & GSP Madabhushi. (2017). Durability of partial saturation to counteract liquefaction. Proc Inst Civ Eng Gr Improv. 170:102–111. doi:10.1680/jgrim.16.00025. [Google Scholar]
  17. M. Okamura, M. Takebayashi, K. Nishida, N. Fujii, M. Jinguji, T. Imasato, et al. (2011). In-Situ Desaturation Test by Air Injection and Its Evaluation through Field Monitoring and Multiphase Flow Simulation. J Geotech Geoenvironmental Eng. 137:643–652. doi: 10.1061/(ASCE)GT.1943–5606.0000483. [Google Scholar]
  18. H. Yasuhara, M. Okamura, Y. Kochi. (2008). Experiments and predictions of soil desaturation by air-injection technique and the implications mediated by multiphase flow simulation. Soils Found. 48:791–804. doi:10.3208/sandf.48.791. [Google Scholar]
  19. A. Zeybek & GSP Madabhushi. (2017). Influence of air injection on the liquefaction-induced deformation mechanisms beneath shallow foundations. Soil Dyn Earthq Eng. 97:266–276. doi:10.1016/j.soildyn.2017.03.018. [Google Scholar]
  20. A. Zeybek & GSP Madabhushi. (2018). Physical modelling of air injection to remediate liquefaction. Int J Phys Model Geotech. 18:68–80. doi:10.1680/jphmg.16.00049. [Google Scholar]
  21. M. Okamura & K. Tamura. (2004). Prediction Method for Liquefaction-Induced Settlement of Embankment with Remedial Measure by Deep Mixing Method. Soils Found. 44:53–65. doi:10.3208/sandf.44.4_53. [Google Scholar]
  22. Okamura M & Teraoka T. (2005). Shaking Table Tests to Investigate Soil Desaturation as a Liquefaction Countermeasure. Seism. Perform. Simul. Pile Found. Liq. Laterally Spreading Gr., Reston, VA: American Society of Civil Engineers. p. 282–293. doi: 10.1061/40822(184)23. [Google Scholar]
  23. E. Eseller-Bayat. (2012). Liquefaction response of partially saturated sands. II: Empirical model. Geotech. 139:872–879. doi: 10.1061/(ASCE)GT.1943–5606.0000816. [Google Scholar]
  24. MK. Yegian, E. Eseller, A. Alshawabkeh. (2006). Preparation and Cyclic Testing of Partially Saturated Sands. Unsaturated Soils 2006, Reston, VA: American Society of Civil Engineers. p. 508–518. doi: 10.1061/40802(189)38. [Google Scholar]
  25. E. Eseller-Bayat, MK. Yegian, A. Alshawabkeh, S. Gokyer. (2012). Prevention of liquefaction during earthquakes through Induced partial saturation in sands. Geotech Eng - New Horizons 21st Eur Young Geotech Eng Conf. 188:188–194. doi: 10.3233/978–1–60750–808–3–188. [Google Scholar]
  26. SJ. Vesper, LC. Murdoch, S. Hayes, WJ. Davis-Hoover. (1994). Solid oxygen source for bioremediation in subsurface soils. J Hazard Mater. 36:265–274. doi: 10.1016/0304–3894(94)85019–4. [Google Scholar]
  27. E Eseller-Bayat. (2009). Seismic response and prevention of liquefaction failure of sands partially saturated through introduction of gas bubbles. [Google Scholar]
  28. S. Gokyer. (2015). Numerical Simulation of Partial Saturation in Sands Induced by Flow and Chemical Reactivity. Northeastern University. [Google Scholar]
  29. V. Rebata-Landa & JC. Santamarina. (2012). Mechanical Effects of Biogenic Nitrogen Gas Bubbles in Soils. J Geotech Geoenvironmental Eng. 138:128–137. doi: 10.1061/(ASCE)GT.1943–5606.0000571. [Google Scholar]
  30. EA. Seagren & AH. Aydilek. (2010). Biomediated geomechanical processes. Environ Microbiol 2nd Edn (Eds R Mitchell J-D Gu). [Google Scholar]
  31. J. He, J. Chu, V. Ivanov. (2013). Remediation of Liquefaction Potential of Sand Using the Biogas Method. Geo-Congress 2013, Reston, VA: American Society of Civil Engineers. 879–887. doi:10.1061/9780784412787.090. [Google Scholar]
  32. J. He. (2013). Mitigation of liquefaction of sand using microbial methods. Nanyang Technological University. doi:10.32657/10356/53528. [Google Scholar]
  33. GF. Pinder & WG. Gray. (2008). Essentials of Multiphase Flow in Porous Media. Wiley. [Google Scholar]
  34. MT. van Genuchten. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci Soc Am J. doi:10.2136/sssaj1980.03615995004400050002x. [Google Scholar]
  35. H. Yasuhara, T. Morito, Y. Kochi, M. Okamura. (2008). Evolution of Soil Desaturation By Air-Injection Technique and Its Evaluation Via Multiphase Flow Simulation. Changes. 1–8. [Google Scholar]
  36. N. Lu, WJ. Likos. (2004). Unsaturated Soil Mechanics. Wiley. [Google Scholar]
  37. J. Chen, J. Hopmans, M. Grismer. (1999). Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Adv Water Resour. 22:479–493. doi: 10.1016/S0309–1708(98)00025–6. [Google Scholar]
  38. H. Ogata, M. Okamura. (2006). Experimental study on air behaviour in saturated soil under air injection. Proc. Symp. Nat. Disaster Prev. JSCE, Tokushima, Japan. 89–90. [Google Scholar]
  39. RC. Chaney. (1978). Saturation effects on the cyclic strength of sands. From Vol. I Earthq. Eng. Soil Dyn. ASCE Geotech. Eng. Div. Spec. Conf. June 19–21, 1978, Pasadena, California. Spons. by Geotech. Eng. Div. ASCE Coop. with, New York, NY. [Google Scholar]
  40. Y. Yoshimi, K. Tanaka, K. Tokimatsu. (1989). Liquefaction resistance of a partially saturated sand. Soils Found. 29:157–162. doi:10.3208/sandf1972.29.3_157. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.