Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 02001
Number of page(s) 8
Section Constitutive and Numerical Modeling
DOI https://doi.org/10.1051/matecconf/202133702001
Published online 26 April 2021
  1. W. J. Sun & Y. J. Cui. (2020). Determining the soilwater retention curve using mercury intrusion porosimetry test in consideration of soil volume change. J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2019.12.022 [Google Scholar]
  2. Y. Chen. (2018). Soil–Water Retention Curves Derived as a Function of Soil Dry Density. GeoHazards, 1:1, 3–19. doi:10.3390/geohazards1010002 [Google Scholar]
  3. H. Sadeghi, S. B. Hossen, A. C. Chiu, Q. Cheng & C. W. W. Ng. (2016). Water retention curves of intact and re-compacted loess at different net stresses. 15th Asian Regional Conf. Soil Mech. Geotech. Eng., Japan. Geotech. Soc. Spec. Publ., 2:4, 221–225. doi: 10.3208/jgssp.HKG-04 [Google Scholar]
  4. A. Bazargan, H. Sadeghi, R. Garcia-Mayoral & G. McKay. (2015). An unsteady state retention model for fluid desorption from sorbents. J. Colloid Interface Sci., 450, 127–134. doi: 10.1016/j.jcis.2015.02.036 [Google Scholar]
  5. S. Assouline, & D. Or. (2013). Conceptual and Parametric Representation of Soil Hydraulic Properties: A Review. Vadose Zone J., 12:4. doi:10.2136/vzj2013.07.0121 [Google Scholar]
  6. H. Sadeghi & P. AliPanahi. (2020). Saturated hydraulic conductivity of problematic soils measured by a newly developed low-compliance triaxial permeameter. Eng. Geol., 278, 105827. doi: 10.1016/j.enggeo.2020.105827 [Google Scholar]
  7. H. Sadeghi, C. F. Chiu, C. W. W. Ng & F. Jafarzadeh. (2020). A vacuum-refilled tensiometer for deep monitoring of in-situ pore water pressure. SCI IRAN, 27(2), 596–606. doi: 10.24200/SCI.2018.5052.1063 [Google Scholar]
  8. A. Kolahdooz, H. Sadeghi & M. M. Ahmadi. (2020). A numerical study on the effect of salinity on stability of an unsaturated railway embankment under rainfall. 4th Eur. Conf. Unsat. Soils. EDP Sciences. doi: 10.1051/e3sconf/202019501004 [Google Scholar]
  9. K. C. Ma, Y. J. Lin & Y. C. Tan. (2013). The influence of salinity on hysteresis of soil waterretention curves. Hydrol. Process., 27:17, 2524–2530. doi: 10.1002/hyp.9393 [Google Scholar]
  10. M. Sadeghi, A. Pak & H. Sadeghi. (2019). Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method. 16th Asian Regional Conf. Soil Mech. Geotech. Eng., Taiwan. [Google Scholar]
  11. C. W. W. Ng, H. Sadeghi & F. Jafarzadeh. (2017). Compression and shear strength characteristics of compacted loess at high suctions. Can. Geotech. J., 54:5, 690–699. doi:10.1139/cgj-2016–0347 [Google Scholar]
  12. C. W. W. Ng, H. Sadeghi, F. Jafarzadeh, M. Sadeghi, C. Zhou & S. Baghbanrezvan. (2020). Effect of microstructure on shear strength and dilatancy of unsaturated loess at high suctions. Can. Geotech. J., 57:2, 221–235. doi: 10.1139/cgj-2018–0592 [Google Scholar]
  13. R. H. Brooks, & A. T. Corey. (1964). Hydraulic properties of porous media. Colorado State University: Hydrology paper. [Google Scholar]
  14. M. T. van Genuchten. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J., 44:5, 892–898. doi: 10.2136/sssaj1980.03615995004400050002x [Google Scholar]
  15. L. M. Arya & J. F. Paris. (1981). A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data. Soil Sci. Soc. Am. J., 45:6, 1023–1030. doi:10.2136/sssaj1981.03615995004500060004x [Google Scholar]
  16. R. Haverkamp, M. Vauclin, J. Touma, P. J. Wierenga & G. Vachaud. (1977). A Comparison of Numerical Simulation Models For One‐Dimensional Infiltration. Soil Sci. Soc. Am. J., 41:2, 285–294. doi: 10.2136/sssaj1977.03615995004100020024x [Google Scholar]
  17. C. W. W. Ng, H. Sadeghi, S. B. Hossen, C. F. Chiu, E. E. Alonso & S. Baghbanrezvan. (2016). Water retention and volumetric characteristics of intact and re-compacted loess. Can. Geotech. J., 53:8, 1258–1269. doi:10.1139/cgj-2015–0364 [Google Scholar]
  18. Y. Qiao, A. Tuttolomondo, X. Lu, L. Laloui & W. Ding. (2021). A generalised water retention model with soil fabric evolution. Geomech. Energy Environ., 25. doi: 10.1016/j.gete.2020.100205 [Google Scholar]
  19. A. C. Dieudonne, G. D. Vecchia & R. Charlier. (2016). A water retention model for compacted bentonites. Can. Geotech. J., 54:7, 915–925. doi:10.1139/cgj-2016–0297 [Google Scholar]
  20. G. Scelsi, G. D. Vecchia & G. Musso. (2020). A water retention model for compacted clays subjected to salinization and desalinization processes. 4th Eur. Conf. Unsat. Soils. 195. EDP Sciences. doi: 10.1051/e3sconf/202019502011 [Google Scholar]
  21. H. Sadeghi, M. Kiani, M. Sadeghi & F. Jafarzadeh. (2019). Geotechnical characterization and collapsibility of a natural dispersive loess. Eng. Geol., 250, 89–100. doi:10.1016/j.enggeo.2019.01.015 [Google Scholar]
  22. Y. He, W. Ye, Y. Chen, B. Chen, B. Ye & Y. J. Cui. (2016). Influence of pore fluid concentration on water retention properties of compacted GMZ01 bentonite. Appl. Clay Sci., 129, 131–141. doi: 10.1016/j.clay.2016.05.020 [Google Scholar]
  23. Y. He, K. Zhang & D. Wu. (2019). Experimental and Modeling Study of Soil Water Retention Curves of Compacted Bentonite considering Salt Solution Effects. Geofluids, 2019. doi:10.1155/2019/4508603 [Google Scholar]
  24. W. M. Ye, F. Zhang, B. Chen, Y. G. Chen, Q. Wang & Y. J. Cui. (2014). Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite. Environ. Earth Sci., 72, 2621–2630. doi: 10.1007/s12665–014–3169-x [Google Scholar]
  25. W. M. Ye, F. Zhang, Y. G. Chen, B. Chen & Y. J. Cui. (2017). Influences of salt solutions and salinization-desalinization processes on the volume change of compacted GMZ01 bentonite. Eng. Geol., 222, 140–145. doi: 10.1016/j.enggeo.2017.04.002 [Google Scholar]
  26. D. Gallipoli, S. J. Wheeler & M. Karstunen. (2003). Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique, 53:1, 105–112. doi: 10.1680/geot.2003.53.1.105 [Google Scholar]
  27. D. Fredlund & A. Xing. (1994). Equations for the soil-water characteristic curve. Can. Geotech. J., 31:4, 521–532. doi:10.1139/t94–061 [Google Scholar]
  28. C. Zhou & C. W. W. Ng. (2014). A new and simple stress-dependent water retention model for unsaturated soil. Comput. Geotech., 62, 216–222. doi: 10.1016/j.compgeo.2014.07.012 [Google Scholar]
  29. X. Li & Y. Xu. (2020). Determination and application of osmotic suction of saline solution in clay. Environ. Earth Sci., 79:48. doi: 10.1007/s12665–019–8795-x [Google Scholar]
  30. H. Sadeghi, H. Nasiri, P. AliPanahi & M. Sadeghi. (2019). Dispersivity, collapsibility and microstructure of a natural dispersive loess from Iran. 16th Asian Regional Conf. Soil Mech. Geotech. Eng., Taiwan. [Google Scholar]
  31. H. Sadeghi. (2016). A Micro-Structural Study on Hydro-Mechanical Behavior of Loess. Dual-Degree PhD thesis. Hong Kong University of Science and Technology & Sharif University of Technology. [Google Scholar]
  32. C. W. W. Ng, S. Baghbanrezvan, H. Sadeghi, C. Zhou & F. Jafarzadeh. (2017). Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions. Can. Geotech. J., 54:9, 1310–1319. doi:10.1139/cgj-2016–0531 [Google Scholar]
  33. G. Xiang, W. Ye, Y. Xu & F. E. Jalal. (2020). Swelling deformation of Na-bentonite in solutions containing different cations. Eng. Geol., 277. doi:10.1016/j.enggeo.2020.105757 [Google Scholar]
  34. A. K. Mishra, J. Dutta, R. Chingtham. (2015). A study on the behavior of the compacted bentonite in the presence of salt solutions. J. Geotech. Eng., 9:4, 354–362. doi:10.1179/1939787914Y.0000000074 [Google Scholar]
  35. T. Thyagaraj & S. M. Rao. (2010). Influence of Osmotic Suction on the Soil-Water Characteristic Curves of Compacted Expansive Clay. J. Geotech. Geoenviron. Eng., 136:12. doi:10.1061/(ASCE)GT.1943–5606.0000389 [Google Scholar]
  36. C. D. Maio. (1996). Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 46:4, 695–707. doi: 10.1680/geot.1996.46.4.695 [Google Scholar]
  37. H. Sadeghi & H. Nasiri. (2021). Hysteresis of soil water retention and shrinkage behaviour for various salt concentrations. Geotech. Lett., 11:1, 1–9. doi: 10.1680/jgele.20.00047. [Google Scholar]
  38. N. Lu & W. Likos. (2004). Unsaturated Soil Mechanics. New York: Wiley. doi: 10.1.1.57:8888/dspace/handle/hau/5179 [Google Scholar]
  39. M. T. van Genuchten, F. J. Leij & S. R. Yates. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. U. S. Salinity Laboratory, U.S. Department of Agriculture, Agricultural Research Service. Riverside, California 9250 1. [Google Scholar]
  40. N. Lu. (2016). Generalized Soil Water Retention Equation for Adsorption and Capillarity. J. Geotech. Geoenviron., 142:10, doi: 10.1.1.57:8888/dspace/handle/hau/5179 [Google Scholar]
  41. C. Du. (2020). A novel segmental model to describe the complete soil water retention curve from saturation to oven dryness. J. Hydrol, 548. doi: 10.1016/j.jhydrol.2020.124649 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.