Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01023
Number of page(s) 7
Section Fundamentals and Experimental Investigations
Published online 26 April 2021
  1. D. Laing, W-D. Steinmann, R. Tamme, C. Richter. (2006). Solid media thermal storage for parabolic trough power plants. Solar Energy 80:10, 1283–1289 [Google Scholar]
  2. D. Laing, C. Bahl, T. Bauer, M. Fiss, N. Breidenbach, M. Hempel. (2012). High-temperature solid-media thermal energy storage for solar thermal power plants. Proceedings of the IEEE 100:2, 516–524 [Google Scholar]
  3. C. Doughty, A. Nir, C.F. Tsang, G.S. Bodvarsson. (1983). Heat storage in unsaturated soils: Initial theoretical analysis of storage design and operational method. Proceedings of the International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm [Google Scholar]
  4. G.K. Hart & W.I. Whiddon. (1984). Ground source heat pump planning workshop. Summary of Proceedings, Palo Alto: Electric Power Research Institute, EPRI Report RP 2033–12 [Google Scholar]
  5. U. Schindler. (1980). Ein Schnellverfahren zur Messung der Wasserleitfähigkeit im teilgesättigten Boden an Stechzylinderproben. Archiv für Acker- und Pflanzenbau Bodenkunde 24:1, 1–7 [Google Scholar]
  6. A. Peters & W. Durner. (2008). Simplified evaporation method for determining soil hydraulic properties. Journal of Hydrology 356, 147–162 [Google Scholar]
  7. P.J. Williams. (1982). The surface of the earth: An introduction to geotechnical science (Addison-Wesley Longman Ltd, New York, USA) [Google Scholar]
  8. D.G. Fredlund & H. Rahardjo. (1993). Soil mechanics for unsaturated soils (John Wiley & Sons Inc., New York, USA) [Google Scholar]
  9. S.K. Vanapalli, D.G. Fredlund, D.E. Pufahl, A.W. Clifton. (1996). Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 33, 379–392 [Google Scholar]
  10. W-T. Hong, Y-S. Jung, S. Kang, J-S. Lee. (2016). Estimation of soil-water characteristic curves in multiple-cycles using membrane and TDR system. Materials 9, 1019 [Google Scholar]
  11. A. Burghignoli, A. Desideri, S. Miliziano. (2000). A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J. 37, 764–780 [Google Scholar]
  12. A. Sawicki & W. Swidzinski. (1989). Mechanics of a sandy soil subjected to cyclic loadings. Int. J. Numer. Anal. Methods Geomech. 13, 511–529 [Google Scholar]
  13. P.M. Duku, J.P. Stewart, D.H. Whang, E. Yee. (2008). Volumetric strains of clean sands subject to cyclic loads. J. Geotech. Geoenviron. Eng. ASCE 134, 1073–1085 [Google Scholar]
  14. C.W.W. Ng, S.H. Wang, C. Zhou. (2016). Volume change behaviour of saturated sand under thermal cycles. Géotechnique Letters 6, 124–131 [Google Scholar]
  15. A. Vega & J.S. McCartney. (2015). Cyclic heating effects on thermal volume change of silt. Environmental Geotechnics 2, 257–268 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.