Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01014
Number of page(s) 6
Section Fundamentals and Experimental Investigations
Published online 26 April 2021
  1. D. Fredlund. (2006). Unsaturated soil mechanics in engineering practice. J. Geotech. Geoenviron. 132: 3, 286–321, doi: 10.1061/(ASCE)1090–0241(2006)132:3(286). [Google Scholar]
  2. A. Ridley & J. Burland. (1993). A new instrument for the measurement of soil moisture suction. Geotechnique. 43: 2, 321–324, doi: 10.1680/geot.1993.43.2.321. [Google Scholar]
  3. N. Jovanovic & J Annandale. (1997). A laboratory evaluation of Watermark electrical resistance and Campbell Scientific 229 heat dissipation matric potential sensors. Water SA. 23: 3, 227–232. [Google Scholar]
  4. C. Shock, J. Barnum, M. Seddigh. (1998). Calibration of Watermark soil moisture sensor for irrigation management. Proc. Int. Irrig. Show, San Diego, California, USA, 139–146. [Google Scholar]
  5. I. McCann, D. Kincaid, D. Wang. (1992). Operational characteristics of the Watermark model 200 soil water potential sensor for irrigation management. Appl. Eng. Agric. 8: 5, 603–609, doi: 10.13031/2013.26131. [Google Scholar]
  6. T. Ley, R. Stevens, R. Topielec, H. Neibling. (2004). Soil water monitoring and measurement. PNW 475 - A Pacific Northwest Publication, Washington, State University, Washington, 1–35. [Google Scholar]
  7. R. Muñoz-Carpena, M. Dukes, Y. Li, W. Klassen. (2005). Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. Horttechnology. 15: 3, 584–590, doi: 10.21273/HORTTECH.15.3.0584. [Google Scholar]
  8. R. Thompson, M. Gallardo, T. Agüera, L. Valdez, M. Fernandez. (2006). Evaluation of Watermark sensor for use with drip irrigated vegetable crops. Irrig. Sci. 24, 185–202, doi: 10.1007/s00271–005–0009–5. [Google Scholar]
  9. R. Mendes. (2008). Estudo das propriedades geotécnicas de solos residuais não saturados de Ubatuba (SP). PhD thesis, Universidade de São Paulo, São Paulo, Brazil, 1–236, doi: 10.11606/T.3.2008.tde-02022009–175315. [Google Scholar]
  10. S. Irmak & D. Haman. (2001). Performance of the Watermark granular matrix sensor in sandy soil. Appl. Eng. Agric. 17, 787–795, doi: 10.13031/2013.6848. [Google Scholar]
  11. B. Cardenas-Lailhacar & M. Dukes. (2010). Precision of soil moisture sensor irrigation controllers under field conditions. Agr. Water Manage. 97, 666–672, doi: 10.1016/j.agwat.2009.12.009. [Google Scholar]
  12. G. Ganjegunte, Z. Sheng, J. Clark. (2012). Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Appl. Water Sci. 2, 119–125, doi: 10.1007/s13201–012–0032–7. [Google Scholar]
  13. J. Chávez, J. Varble, A. Andales. (2011). Performance evaluation of selected soil moisture sensors. Proc. of the 23rd Annual Cent. Plains Irri. Conf., Burlington, Colorado, USA, 29–38. [Google Scholar]
  14. E. Napolitano, F. Fusco, R. Baum, J. Godt, P. De Vita. (2016). Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy). Landslides. 13, 967–983, doi: 10.1007/s10346–015–0647–5. [Google Scholar]
  15. P. De Vita, F. Fusco, R. Tufano, D. Cusano. (2018). Seasonal and event-based hydrological and slope stability modeling of pyroclastic fall deposits covering slopes in Campania (Southern Italy). Water. 10, 1–23, doi: [Google Scholar]
  16. V. Whenham, M. Vos, C. Legrand, R. Charlier, J. Maertens, J. Verbrugge. (2007). Influence of soil suction on trench stability. In: T. Schanz (eds.) Experimental unsaturated soil mechanics. Springer Proc. in Physics. 112, 495–501, doi: 10.1007/3–540–69873–6_49. [Google Scholar]
  17. K. Bicalho, Y. Boussafir, Y. Cui. (2018). Performance of an instrumented embankment constructed with lime-treated silty clay during four-years in Northeast of France. Transp. Geotech. 17, 100–116, doi: 10.1016/j.trgeo.2018.09.009. [Google Scholar]
  18. J. Chard. (2005). Watermark soil moisture sensors: Characteristics and operating instructions. Utah State University. 1–8. [Google Scholar]
  19. J. Jabro, R. Evans, Y. Kim. (2009). Estimating in situ soil-water retention and field water capacity in two contrasting soil texture. Irrig. Sci. 27, 223–229, doi: 10.1007/s00271–008–0137–9. [Google Scholar]
  20. D. Fredlund, H. Rahardjo, M. Fredlund. (2012). Measurement and estimations of state variables. In: D. Fredlund et al. (Eds) Unsaturated soils mechanics in engineering practice. Wiley, New Jersey, USA, 109–183. [Google Scholar]
  21. M. Lemos & F. Marinho. (2018). Caracterização geológico-geotécnica do solo residual proveniente de gnaisse migmatítico do Complexo Embu, São Paulo, SP. Anais do XIX COBRAMSEG, Salvador, Bahia, Brazil. [Google Scholar]
  22. P. Orlando. (2015). Avaliação experimental da interação solo coesivo-fita polimérica sob condições de teor de umidade variáveis. MA Dissertation thesis, Universidade de São Paulo, São Paulo, Brazil, 1–213, doi: 10.11606/D.3.2015.tde-10112015–113843. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.