Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01015
Number of page(s) 7
Section Fundamentals and Experimental Investigations
DOI https://doi.org/10.1051/matecconf/202133701015
Published online 26 April 2021
  1. W. Zhang, C. Sun, Q. Qiu. (2016). Characterizing of a Capillary Barrier Evapotranspirative Cover Under High Precipitation Conditions. Environ Earth Sci 75: 513. doi:10.1007/s12665–015–5214. [Google Scholar]
  2. C. B. Pickles & J. G. Zornberg. (2012). Hydraulic Classification of Unsaturated Nonwoven Geotextiles for Use in Capillary Barriers. Second Pan American Geosynthetics Conference & Exhibition (GeoAmericas 2012). Lima, Perú –13 p. [Google Scholar]
  3. J. G. Zornberg, M. M. Azevedo, C. B. Pickles. (2016). Evaluation of the Development of Capillary Barriers at the Interface Between Fine-Grained Soils and Nonwoven Geotextiles. In: Geosynthetics, forging a path to bona fide engineering materials: in honor of Robert M. Koerner. GSP 275. Y. G. HSUA, S. K. BHATIA, T. Y. SOONG. The American Society of Civil Engineers (ASCE). P341. [Google Scholar]
  4. M. J. De Lima, M. M. Azevedo, J. G. Zornberg, E. M. Palmeira. (2017). Capillary Barriers Incorporating Non-Woven Geotextiles. Env. Geo. – ICE – Institution of Civil Engineers, 8p.https://doi.org/10.1680/jenge.16.00038. [Google Scholar]
  5. J. S. McCartney, L. F. S. Villar, J. G. Zornberg. (2008). Nonwoven Geotextiles as Hydraulic Barriers to Capillary Rise. Proceedings of Geoamericas 2008: The 1st Pan American Geosynthetics Conference and Exhibition. Cancún, Mexico. Mar. 2–5. IFAI. pp. 252–261. [Google Scholar]
  6. M. J. De Lima, J. G. Zornberg, E. M. Palmeira. (2015). Barreiras Capilares em Coberturas Evapotranspirativas. In: C. J. Camapum, G. F. N. Gitirana Jr (Org.), S. L, Machado (Org.), M. M. A. Mascarenha (Org.), F. C. Silva Filho (Org.). Solos Não Saturados No Contexto Geotécnico. 1 ed. São Paulo: ABMS, v. 1. 804p. [Google Scholar]
  7. Hillel, D. (1998). Introduction to Environmental soil physics. University of Massachusetts. Amherst, Massachusetts, USA. Academic Press, 1998. 771 p. [Google Scholar]
  8. F. A. M. Marinho, M. A. A. Soto, G. F. N. Gitirana Jr. (2015). Instrumentação de Laboratório e Campo e a Medição da Curva de Retenção. In: C. J. Camapum, G. F. N. Gitirana Jr (Org.), S. L, Machado (Org.), M. M. A. Mascarenha (Org.), F. C. Silva Filho (Org.). Solos Não Saturados No Contexto Geotécnico. 1 ed. São Paulo: ABMS, v. 1. 804p. [Google Scholar]
  9. ASTM D 6836. (2002). Standard Test Methods for Determination of the Soil Water Chararcteristic Curve for Desorption Using a Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, and/or Centrifuge. American Society For Testing And Materials. 19p. [Google Scholar]
  10. D. G. Fredlund & A. Xing. (1994). Equations for the Soil-Water Characteristic Curve. Canadian Geotechnical Journal, 31(3): 521–532. [Google Scholar]
  11. H. B. F. Barreto, R. O. Batista, W. O. Santos, F. G. C. Freire, F. G. B. Costa,. (2012). Empirical Models for Estimating Water Retention Curves in Soil in Janaúba-MG, Brazil. Idesia, v. 30, p. 71–76. [Google Scholar]
  12. M. J. De Lima, E. M. Palmeira, J. G. Zornberg. (2014). Determinação de Curva de Retenção de Água de Geotêxtil Não Tecido Utilizando Ensaio de Coluna Suspensa. In: Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, Goiânia. Anais do COBRAMSEG 7 p. [Google Scholar]
  13. D. Croney, J. D. Coliman. (1961). Pore Pressure and Suction in Soils. Proceeding in Conference om Pore Pressure and Suction in Soild, pp. 31–37, London. [Google Scholar]
  14. B. G. Richards. (1965). Measurement of the Free Energy of Soil Moisture by the Psychrometric Technique Using Thermistors. In: Division of Applied Geomechanics, editor/s. Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas. A symposium in print convened by Soil Mechanics Section, CSIRO, in collaboration with the National Building Research Institute and National Institute for Road Research CSIR, South Africa; Sydney, N.S.W.: Butterworths. 39–46p. [Google Scholar]
  15. J. C. Stormont, C. Ray, T. M. Evans. (2001). Transmissivity of a Nonwoven Polypropylene Geotextile Under Suction. Geotechnical Testing Journal. GTJODJ, Vol. 24, No.2, pp. 164–171. [Google Scholar]
  16. J. G. Zornberg, A. Bouazza, J. S. Mccartney. (2010). Geosynthetic Capillary Barriers: Current State Of Knowledge. Geosynth Int 17(5):273–300 [Google Scholar]
  17. M. Heibaum. (2010). Geosynthetics in Agricultural and Aquacultural Applications. In: 9th International Conference on Geosynthetics, Brasil, pp. 259–271. [Google Scholar]
  18. J. G. Zornberg & J. S. Mccartney. (2007). Chapter 34: Evapotranspirative Cover Systems for Waste Containment. The Handbook of Groundwater Engineering, 2nd edition. Jacques W. Delleur, Editor, CRC Press, Taylor & Francis Group, Boca Raton, FL. [Google Scholar]
  19. S. S. Agus & T. Schanz. (2005). Comparison of four Methods for Measuring Total Suction. Vadose Zone J., 4, 1087–1095. [Google Scholar]
  20. J. Stormont, K. Henry, T. Evans. (1997). Water Retention Functions of Four Nonwoven Polypropylene Geotextiles. G.I. 4 (6): 661–672. [Google Scholar]
  21. K. S. Henry & R. D. Holtz. (1997). Capillary Rise of Water in Geotextiles. Proceedings, International Symposium on Ground Freezing and Frost Action in Soils, S. Knutsson, Ed., Luleå, Sweden, 15–17 April, pp. 227–233. In: J. C. STORMONT, C. RAY, T. M. EVANS. (2001) Transmissivity of a Nonwoven Polypropylene Geotextile Under Suction. Geotechnical Testing Journal, GTJODJ, Vol. 24, No.2, pp. 164–171. [Google Scholar]
  22. J. C. Stormont & C. E. Morris. (2000). Characterization of Unsaturated Nonwoven Geotextiles. Advances in Unsaturated Geotechnics, IIn: J. C. STORMONT, C. RAY, T. M. EVANS. (2001) Transmissivity of a Nonwoven Polypropylene Geotextile Under Suction. Geotechnical Testing Journal, GTJODJ, Vol. 24, No.2, pp. 164–171. [Google Scholar]
  23. D. J. Paula Neto. (2019). Influência da Estrutura no Comportamento Hidromecânico de um Solo Tropical Residual de Gnaisse Do Complexo Belo Horizonte – Dissertação (mestrado, xviii,115 f.: il., color.). Universidade Federal de Minas Gerais, Belo Horizonte. [Google Scholar]
  24. ABNT NBR ISO 9863. (2013). Geossintéticos — Determinação da Espessura a Pressões Especificadas. Parte 1: Camada Única. Associação Brasileira de Normas Técnicas, São Paulo, SP, 5p. [Google Scholar]
  25. ABNT NBR ISO 9864. (2013) -Geossintéticos — Método de Ensaio para Determinação da Massa por Unidade de Área de Geotêxteis e Produtos Correlatos. Associação Brasileira de Normas Técnicas, São Paulo, SP, 2p. [Google Scholar]
  26. ASTM D 5298. (2010). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. American Society for Testing and Materials. 6p. [Google Scholar]
  27. R. J. Chandler, M. S. Crilley, G. MONTGOMERYSMITH. (1992). A Low-Coast Method of Assessing Clay Desiccation for Low-Rise Buildings. Proc. Instn. Civ. Engrs Civ. Engng. May, 82–89p. [Google Scholar]
  28. M. T. Van Genuchten. (1980). A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. of Ame. J. 44: 892–898. [Google Scholar]
  29. Y. A. Mualem. (1976) New Model for Predicting The Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research, Vol. 12 (3). p. 513–522. 1976. [Google Scholar]
  30. M. J. De Lima. (2014). Utilização de Geotêxtil Não Tecido como Elemento Constituinte de Barreiras Capilares. Tese de Doutorado, Publicação GTD 095/14, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 128 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.