Open Access
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01006
Number of page(s) 7
Section Fundamentals and Experimental Investigations
Published online 26 April 2021
  1. L. Hoyos, A. Puppala, P. Chainuwat (2004). Dynamic properties of chemically stabilized sulfate rich clay. Journal of Geotechnical and Geoenvironmental Engineering. 130: 153–162. DOI: 10.1061/(ASCE)1090–0241(2004)130:2(153). [Google Scholar]
  2. D. P. Alazigha, B. Indraratna, J. S. Vinod, & L.E Ezeajugh. (2016). The swelling behaviour of lignosulfonate-treated expansive soil. Proceedings of the Institution of Civil Engineers: Ground Improvement, 169(3), 182–193. [Google Scholar]
  3. I. Chang, G. Cho (2012). Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer. Const. Build. Mater. 30: 30–35. [Google Scholar]
  4. N. Hataf, P. Ghadir, N. Ranjbar (2018). Investigation of soil stabilization using chitosan biopolymer. J. Clean. Prod. 170: 1493–1500. [Google Scholar]
  5. R. Brooks (2009). Soil stabilization with fly ash and rice husk ash. International Journal of Research and Reviews in Applied Sciences. 1(3), 209–217. [Google Scholar]
  6. H. Canakci, A. Aziz, F. Celik (2015). Soil stabilization of clay with lignin, rice husk powder and ash. Geomechanics and Engineering. 8(1), 67–79. doi: 10.12989/gae.2015.8.1.067 [Google Scholar]
  7. S. Orlandi, M.E. Taverna, Y. Villada, T. Piqué, C. Laskowski, V. Nicolau, D. Estenoz, D. Manzanal (2021). Additives based on vegetable biomass to improve the stabilization of expansive clay Soil. Environmental Geotechnics. Accepted. [Google Scholar]
  8. M. Attom, & M. Al-Sharif (1998). Soil stabilization with burned olive waste. App. clay Sci. 13(3), 219–230. [Google Scholar]
  9. J. Tingle, J. Newman, S. Larson, C. Weiss, J. Rushing (2007). Stabilization mechanisms of nontraditional additives. Transp. Res. Rec. 1989(1), 59–67. [Google Scholar]
  10. N. Ijaz & F. Dai (2020). Paper and wood industry waste as a sustainable solution for environmental vulnerabilities of expansive soil: A novel approach. Journal of Environmental Management. 262 (January), 110285. Doi:10.1016/j.jenvman.2020.110285 [Google Scholar]
  11. D. P. Alazigha, B. Indraratna, J. S. Vinod & A. Heitor (2018). Mechanisms of stabilization of expansive soil with lignosulfonate admixture. Transportation Geotechnics. 14:81–92. Doi:10.1016/j.trgeo.2017.11.001. [Google Scholar]
  12. M. Fernandez, D. Manzanal, T. Piqué, M. Codevilla (2017). Polymer Applications to Control Soil Expansion. Second International Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2). Faculty of Engineering, University of Leeds, LEEDS, LS2 9JT, UK. September 6–7, 2017 [Google Scholar]
  13. M. Fernandez, S. Orlandi, T. Piqué, M. Codevilla, D. Manzanal (2021. Performance of Calcium Lignosulfonate as stabilizer of highly expansive clay. Transportation Geotechnics. Vol. 27:100469. [Google Scholar]
  14. S. Orlandi, D. Manzanal, A. Ruiz, M. Ávila, V. Graf, (2015). A case study on expansive clays on Comodoro Rivadavia city. From Fundamentals to Applications in Geotechnics: Proceedings of the 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (15th PCSMGE), Manzanal D. & Sfriso A. Editors. 15–17 November, Buenos Aires, Argentine. Ed. IOS Press. Pages 2276–2283. doi: 10.3233/978–1–61499–603–3–2276. [Google Scholar]
  15. S. Orlandi, D. Manzanal, E. Miranda, M. Robison (2019) Using Lignin as stabilizer of swelling soils. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering. 17–20 November 2019. Cancun, México. Doi: 10.3233/STAL190295 [Google Scholar]
  16. D. Manzanal, S. Orlandi, E. Miranda, M. Robinson, J. C. Barría (2019). Swell characterization of expansive clays from Comodoro Rivadavia city. - Argentine. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering. 17–20 November 2019. Cancun, México. Doi:10.3233/STAL190107 [Google Scholar]
  17. E. Romero (1999). Characterization and thermo-hydro-mechanical behaviour of unsaturated Boom clay: an experimental study. PhD thesis, Universitat Politecnica de Catalunya, Barcelona. [Google Scholar]
  18. J.A. Muñoz-Castelblanco, J. Pereira, P. Delage, Y. Cui (2012). The water retention properties of a natural unsaturated loess from northern France. Geotechnique, 62(2), pp. 95–106. DOI: 10.1680/geot.9.P.084. [Google Scholar]
  19. L. Marti, M. Codevilla, T. Piqué, D. Manzanal (2015). Natural Soil Modified with Polymer for use in landfill systems. From Fundamentals to Applications in Geotechnics (15th PCSMGE). Manzanal D. & Sfriso A. Editors. 15–17 November, Buenos Aires, Argentine. Ed. IOS Press. Pages 2228–2235. doi: 10.3233/978–1–61499–603–3–2228 [Google Scholar]
  20. T. Piqué, D. Manzanal, M. Codevilla, S. Orlandi (2019). Polymer Enhanced Soils Mixture for Potential Use as Covers or Liners in Landfill Systems Environmental Geotechnics. Published Online: August 23, 2019. DOI: 10.1680/jenge.18.00174 [Google Scholar]
  21. P. Delage & G. Lefebvre (1984). Study of the Structure of a sensitive Champlain clay and of its evolution during consolidation. Canadian Geotechnical Journal. Vol. 21(1):21–35. DOI: 10.1139/t84–003 [Google Scholar]
  22. M.T. van Genuchten (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science of America Journal. 44: 892–898. [Google Scholar]
  23. P. Delage, D. Marcial, Y. Cui, X. Ruiz (2006). Ageing effects in a compacted bentonite: a microstructure approach. Geotechnique 56, No. 5, 291–304, DOI: 10.1680/geot.2006.56. 5.291 [Google Scholar]
  24. L. Luckner, M.T. Van Genuchten, D.R. Nielsen, (1989). A consistent set of parametric models for the two‐phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193, DOI:10.1029/WR025i010p02187 [Google Scholar]
  25. D.G. Fredlund & A. Xing (1994). Equations for the Soil-Water Characteristic Curve. Canadian Geotechnical Journal. 31, 521–532. [Google Scholar]
  26. D. Manzanal, M. Pastor, J.A. Fernandez Merodo, P. Mira (2010). A state parameter based Generalized Plasticity model for unsaturated soils. Computer Modelling in Engineering and Science CMES, vol. 55, no.3, pp.293–317, 2010. Doi: 10.3970/cmes.2010.055.293 [Google Scholar]
  27. D. Manzanal, M. Pastor, J.A. Fernandez Merodo (2011). Generalized plasticity state parameter-based model for saturated and unsaturated soils Part II: unsaturated soil modeling. Int. J. Numer. Anal. Met. 35 (18), 1899–1917. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.