Open Access
Issue
MATEC Web Conf.
Volume 337, 2021
PanAm-Unsat 2021: 3rd Pan-American Conference on Unsaturated Soils
Article Number 01005
Number of page(s) 6
Section Fundamentals and Experimental Investigations
DOI https://doi.org/10.1051/matecconf/202133701005
Published online 26 April 2021
  1. M. Azmi, M.H. Ramli, M.A. Hezmi, S.A.N. Mohd Yusoff, , M.N.A. Alel. (2019). Estimation of Soil Water Characteristic Curves (SWCC) of mining sand using soil suction modelling. IOP Conf. Ser.: Mater. Sci. Eng. 527, doi: 10.1088/1757–899X/527/0012016 [Google Scholar]
  2. D.G. Fredlund, H. Rahardjo, M.D. Fredlund. (2012). Unsaturated soil mechanics in engineering practice (John Wiley & Sons, Hoboken) [Google Scholar]
  3. W. Hong, Y. Jung, S. Kang, J. Lee. (2016). Estimation of Soil-Water Characteristic Curve in Multiple-Cycles using membrane and TDR system. Materials 9:1019. doi: 10.3390/ma9121019 [Google Scholar]
  4. H.A. Nandar. (2018). Application of unsaturated soil mechanics to foundation engineering (National Autonomous University of Mexico, Master’s thesis, Ciudad de Mexico) [Google Scholar]
  5. A. Johari, G. Habibagahi, A. Ghahramani. (2006) Prediction of soil–water characteristic curve using genetic programming. Journal of Geotechnical and Geoenvironmental Engineering. 132:5,661–665, doi: 10.1061/(ASCE)1090–0241(2006)132:5(661) [Google Scholar]
  6. O.M. Oliveira & F.A.M. Fernando. (2006). Study of equilibration time in the Pressure Plate. 4th Int. Conf. on Unsaturated Soils, 1864–1874, doi: 10.1061/40802(189)157 [Google Scholar]
  7. R. Sharma & M. Mohamed. (2006). Evolution of degree of saturation and suction relationships under dynamic flow. 4th Int. Conf. on Unsaturated Soils, 1494–1502, doi: 10.1061/40802(189)124 [Google Scholar]
  8. S. Lourenço, D. Gallipoli, D. Toll, F. Evans, G. Medero. (2007). Determination of the soil water retention curve with tensiometers. Experimental Unsaturated Soil Mechanics. 112, 95–102. doi: 10.1007/3–540–69873–6_9 [Google Scholar]
  9. S. Sreedeep & D.N. Singh. (2005). Methodology for determination of osmotic suction of soils. Geotechnical and Geological Engineering. 24:1469–1479, doi: 10.1007/s10706–005–1882–7 [Google Scholar]
  10. T. Abeykoon, R. Udumkumburage, C. Gallage, T. Uchimura. (2017). Comparison of direct and indirect measured soil-water characteristic curves for silty sand. International Journal of GEOMATE. 13:39, 9–16, doi: 10.21660/2017.39.170519 [Google Scholar]
  11. A. Reder, G. Rianna, L. Pagano. (2014). Calibration of TDRs and heat dissipation probes in pyroclastic soils. Procedia Earth and Planetary Science 9:171–179. doi: 10.1016/j.proeps.2014.06.016. [Google Scholar]
  12. S. Houston, W. Houston, C. Zapata, C. Lawrence. (2001). Geotechnical engineering practice for collapsible soils. Geotechnical and Geological Engineering 19:333–355, doi: 10.1023/A:1013178226615. [Google Scholar]
  13. ASTM D5333–03. Standard Test Method for Measurement of Collapse Potential of Soils (Withdrawn 2012), ASTM International, West Conshohocken, PA, 2003. doi: 10.1520/D5333–03 [Google Scholar]
  14. E. Leong, L. He, H. Rahardjo. (2002). Factors affecting the filter paper method for total and matric suction measurements. Geotech. Test. J. 25:3, 321–332, doi: 10.1520/GTJ11094J [Google Scholar]
  15. O.M. Vilar & R.A. Rodrigues. (2015). Revisiting classical methods to identify collapsible soils. Soil and Rocks. Brazilian Soc Soil Mechanics & Geotechnical Engineering. 38:3, 265–278, doi: hdl.handle.net/11449/158814. [Google Scholar]
  16. ASTM D4546–14e1, Standard Test Methods for One-Dimensional Swell or Collapse of Soils, ASTM International, West Conshohocken, PA, 2014. doi: 10.1520/D4546–14E01 [Google Scholar]
  17. K. Bicalho, F Marinho, J. Fleureau, A. Gomes, S. Ferreira. (2009). Evaluation of filter paper calibrations for indirect determination of soil suctions of an unsaturated compacted silty sand. 17th International Conference on Soil Mechanics and Geotechnical Engineering. 1, 777–780. doi: 10.3233/978–1–60750–031–5–777. [Google Scholar]
  18. ASTM D5298–16, Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper, ASTM International, West Conshohocken, PA, 2016. doi: 10.1520/D5298–16. [Google Scholar]
  19. R. Brooks & A. Corey. (1964). Hydraulic properties of porous media. Hydrology paper. 3, 27. [Google Scholar]
  20. E.C. Leong & H. Rahardjo. (1997). Review of Soil-Water Characteristic Curve Equations. Journal of Geotechnical and Geoenvironmental Engineering. 123:12, 1106–1117, doi: 10.1061/(ASCE)1090–0241(1997)123:12(1106) [Google Scholar]
  21. M.T. Van Genuchten. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci Soc Am J. 44:892–898, doi: 10.2136/sssaj1980.03615995004400050002x. [Google Scholar]
  22. Y. Chen. (2020). Soil-Water retention curves derived as a function of soil dry density. Geohazards. 1:1,3–19. doi: 10.3390/geohazards1010002 [Google Scholar]
  23. C.P.K. Gallage & T. Uchimura. (2010). Effects of dry density and grain size distribution on soil–water characteristic curves of Sandy soils. Soils and Foundations. 50:1,161–172, doi: 10.3208/sandf.50.161 [Google Scholar]
  24. K. Seki. (2007). SWRC fi t–A nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol. Earth Syst. Sci. Discuss. 4, 407–437, doi: 10.5194/hessd-4–407–2007 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.