Open Access
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
Article Number 05013
Number of page(s) 10
Section Computer Science and System Design
Published online 15 February 2021
  1. Cheng Shilei. Research on Feature Extraction and Recognition Method of Human Behavior in Video Sequence: University of Electronic Science and Technology, (2020). [Google Scholar]
  2. BOBICK A.F, DAVIS J.W. The Recognition of Human Movement using Temporal Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence. 38(1):142-158. (2016) [Google Scholar]
  3. YANG X.D,TIAN Y.L. Effective 3D Action Recognition using EigenJoints. Journal of Visual Communication and Image Representation, 25(1):2-11,(2014). [Google Scholar]
  4. WILLEMS G, TUYTELAARS T, GOOL L. An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector. //European conference on computer vision. Springer, Berlin, Heidelberg: 650-663, (2008). [Google Scholar]
  5. Wang H, Klser A, Schmid C, et al. Dense Trajectories and Motion Boundary Descriptors for Action Recognition. International journal of computer vision, 103(1):60-79, (2013). [Google Scholar]
  6. Wang H, Schmid C. Action Recognition with Improved Trajectories. Proceedings of the 2013 IEEE International Conference on Computer Vision. IEEE, (2013). [Google Scholar]
  7. Simonyan K, Zisserman A. Two-Stream Convolutional Networks for Action Recognition in Videos. Advances in neural information processing systems, (2014). [Google Scholar]
  8. Ji S, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition. IEEE transactions on pattern analysis and machine intelligence, 35(1):221-231,(2012). [Google Scholar]
  9. Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description.//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 2625-2634,(2015). [Google Scholar]
  10. Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations.//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition: 1580-1589,(2020). [Google Scholar]
  11. Zhang Lianchao, Qiao Ruiping, Dang Qiwei, et al. Spatial attention mechanism with global characteristics. Journal of Xi 'an Jiaotong University,54(11):129-138,(2020). [Google Scholar]
  12. WOO S, PARK J, LEE J.Y, et al. CBAM: convolutional block attention module.//Proceedings of the 15th European Conference on Computer Vision. Cham:Springer International Publishing: 3-19,(2018). [Google Scholar]
  13. Roy A.G, Navab N, Wachinger C. Concurrent spatial and channel ‘squeeze & excitation’in fully convolutional networks.//International conference on medical image computing and computer-assisted intervention. Springer, Cham: 421-429, (2018). [Google Scholar]
  14. Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3.//Proceedings of the IEEE International Conference on Computer Vision: 1314-1324, (2019). [Google Scholar]
  15. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation, 9(8):1735-1780,(1997). [Google Scholar]
  16. SUDHAKARAN S L O. Learning to detect violent videos using convolu-tional long short-term memory.//2017 14th IEEE International Conference on Ad-vanced Video and Signal Based Surveillance (AVSS), IEEE: 1-6, (2017). [Google Scholar]
  17. Ming Cheng, Kunjing Cai, Ming Li. "RWF-2000: An Open Large Scale Video Database for Violence Detection.". arXiv preprint arXiv:1911.05913 (2019). [Google Scholar]
  18. Bermejo N.E, Deniz S.O, Bueno G, et al. Violence Detection in Video Using Computer Vision Tech-niques.// International conference on Computer analysis of images and patterns, August 29-31, 2011, Seville, Spain. Heidelberg: Springer Berlin Heidelberg: 332-339, (2011). [Google Scholar]
  19. Carreira J, Zisserman A. Quo vadis, action recognition? a new model and the kinetics dataset.//proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 6299-6308. (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.