Open Access
Issue
MATEC Web Conf.
Volume 334, 2021
The VI International Scientific and Practical Conference “Information Technologies and Management of Transport Systems” (ITMTS 2020)
Article Number 02014
Number of page(s) 6
Section Digital Technologies in Transport
DOI https://doi.org/10.1051/matecconf/202133402014
Published online 15 January 2021
  1. V. Kanarchuk, A. Chigrinets, L. Golyak, P. Shotsky, Restoration of automotive parts: technology and equipment. M., Transport, 303 p. (1995) [Google Scholar]
  2. A. Denisov, Bases of working capacity of technical systems: the textbook / А.S. Denisov. - Saratov: Sarat. state. tech. Univ., 312 p. (2014) [Google Scholar]
  3. Y. Shi, L. Dong, H. Wang, G. Li, S. Liu. Fatigue features study on the crankshaft material of 42CrMo steel using acoustic emission. Frontiers of Mechanical Engineering; 11(3), p. 233-241. (2016) [Google Scholar]
  4. W. Li, Q. Yan, J. Xue, Analysis of a crankshaft fatigue failure. Engineering Failure Analysis; p. 139-147. (2015) [CrossRef] [Google Scholar]
  5. M. Fonte, B. Li, L. Reis, M. Freitas, Crankshaft failure analysis of a motor vehicle. Engineering Failure Analysis; p. 147-152. (2013) [Google Scholar]
  6. K. Aliakbari, Failure analysis of four-cylinder diesel engine crankshaft. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41(1), 30. (2018) [Google Scholar]
  7. W. He, X. Xiao, B. Chen, Z. Yang, Z. Zhang, Based on the stress intensity factor calculation of EQ4H type internl combustion engine crankshaft with crack. Jixie Qiangdu/Journal of Mechanical Strength. 38(2), p. 369-373. (2016) [Google Scholar]
  8. N.-N. Sun, G.-X. Li, S.-Z. Bai, Y. Wang, T. Wei, Analysis of crankshaft fatigue based on stain-life theory. Neiranji Gongcheng/Chinese Internal Combustion Engine Engineering. 35(6), p. 60-64 and 83. (2014) [Google Scholar]
  9. G. Cai, Y. Huang, Y. Li, Crankshaft vibratory stress relief process analysis and device design. Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis. 33(SUPPL.1), p. 97-101. (2013) [Google Scholar]
  10. X. Zhou, X. Yu, Fatigue crack growth regular tests for engine crankshaft and analysis on the mechanism. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering. 44(1), p. 238-242. (2008) [Google Scholar]
  11. K. Vansovich, Model of growth of fatigue surface cracks for the cycle “load-unloading”. Omsk scientific bulletin. No. 3 (153). p. 49-53. (2017) [Google Scholar]
  12. V. Goltsev, V. Markochev, A technique for studying the growth processes of fatigue cracks at a constant sweep of the stress intensity factor. Deformation and destruction of materials. № 7. p. 43-47. (2012) [Google Scholar]
  13. E. Mamaeva, Yu.G. Matvienko, O. Priymak, S. Chuvaev Calculated dependencies for estimating the growth rate of fatigue cracks in low-alloy steels. Factory laboratory. Diagnostics of materials. T. 74. № 2. p. 38-46. (2008) [Google Scholar]
  14. M. Georgiev, N. Mezhova, Distribution of short fatigue cracks. Factory laboratory. Diagnostics of materials. T. 72. № 3. p. 55-58. (2006) [Google Scholar]
  15. Kh. Saidov, F. Saidov, Experimental study of the propagation of a fatigue surface crack. Actual scientific research in the modern world. No. 7-1 (27). p. 99-103. (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.