Open Access
MATEC Web Conf.
Volume 334, 2021
The VI International Scientific and Practical Conference “Information Technologies and Management of Transport Systems” (ITMTS 2020)
Article Number 01035
Number of page(s) 8
Section Intelligent Transport Systems
Published online 15 January 2021
  1. Carmona, Matthew. Public places, urban spaces: the dimensions of urban design. Routledge (2010) [Google Scholar]
  2. Kitchin, Rob. “Big Data, new epistemologies and paradigm shifts.” Big Data & Society 1.1: 2053951714528481. (2014) [Google Scholar]
  3. Misuraca, Gianluca, Francesco Mureddu, and David Osimo. “Policy-making 2.0: Unleashing the power of big data for public governance.” Open government. Springer, New York, NY, pp. 171-188 (2014) [Google Scholar]
  4. Albino, Vito, Umberto Berardi, and Rosa Maria Dangelico. “Smart cities: Definitions, dimensions, performance, and initiatives.” Journal of Urban Technology 22.1, pp. 3-21 (2015) [Google Scholar]
  5. I. Lakshmi, “A literature survey on Big Data Analytics in Service Industry.” International Journal of Engineering and Computer Science 5.4 (2016). Breslin, J., Decker, S. (2007) [Google Scholar]
  6. Dimitrakopoulos, George, and George Bravos. Current Technologies in Vehicular Communication. Springer (2016) [Google Scholar]
  7. Psomakelis, Evangelos, et al. “BIG IOT AND SOCIAL NETWORKING DATA FOR SMART CITIES.” [Google Scholar]
  8. Chong, Hon Fong, and Danny Wee Kiat Ng. “Development of IoT device for traffic management system.” In Research and Development (SCOReD), 2016 IEEE Student Conference on, pp. 1-6. IEEE (2016) [Google Scholar]
  9. M.A. Korablin, S.V. Smirnov, Inheritance of properties in the problems of object-oriented programming in Modula-2, Programming, 4, pp. 38-43 (1990) [Google Scholar]
  10. L.Ya. Kozhukhovskaya, V.N. Baskov, A.V. Ignatov, Modular Management of Indicators of Efficiency and Safety of Transportation Processes, Transportation Research Procedia, 20, pp. 361-366 (2017) [Google Scholar]
  11. T.I. Mikheeva, S.V. Mikheev, Using the principles of object-oriented design of an intelligent transport system, Bulletin of SamSTU, 34, pp. 141-148 (2005) [Google Scholar]
  12. T. Liebig, N. Piatkowski, Ch. Bockermann, K. Morik, Dynamic route planning with real-time traffic predictions, Information Systems, 64, pp. 258-265 (2017) [Google Scholar]
  13. T.I. Mikheeva, S.V. Mikheev, Models of inheritance in the traffic management system, Information technology, 7, pp. 50-54 (2001) [Google Scholar]
  14. A.P. Artynov, G.A. Kondratiev, Managing the interaction of transport systems, Moscow: Nauka, 197 p. (1986) [Google Scholar]
  15. H. Inose, T. Hamada, Traffic management: Trans. with English, Moscow: Transport, 248 p. (1983) [Google Scholar]
  16. G.I. Klinkovshteyn, Organization of road traffic, Moscow: Transport, 240 p. (1982) [Google Scholar]
  17. E.I. Vidmanova, V.N. Baskov, Assessment of the level of adaptation of the traffic flow to the road network, Bulletin of the Saratov State Technical University, 71, Part 2, pp. 364-368 (2013) [Google Scholar]
  18. M. Aslani, M.S. Mesgari, M. Wiering, Adaptive traffic signal control with actor-critic methods in a real-world traffic network with different traffic disruption events , Transportation Research Part C: Emerging Technologies, 85, pp. 732-752 (2017) [Google Scholar]
  19. A. Danilevičius, M. Bogdevičius, Investigation of Traffic Light Switching Period Affect for Traffic Flow Dynamic Processes Using Discrete Model of Traffic Flow, Procedia Engineering, 187, pp. 198-205 (2017) [Google Scholar]
  20. R. Li, M. Guo, Effects of odd–even traffic restriction on travel speed and traffic volume: Evidence from Beijing Olympic Games, Journal of Traffic and Transportation Engineering (English Edition), 3, Iss. 1, pp. 71-81 (2016) [Google Scholar]
  21. J. Chen, L. Ming, R. Jiang, Effects of the amount of feedback information on urban traffic with advanced traveler information system, Physics Letters A, 381, 35, pp. 2934-2938 (2017) [Google Scholar]
  22. A.V. Ignatov, V.N. Baskov, Categorization of sections of the street-road network according to the degree of risk of traffic congestion, taking into account the speed intervals, The world of transport and technological machines, 3(54), pp. 53-60 (2016) [Google Scholar]
  23. S. Hohmann, J. Geistefeldt, Traffic Flow Quality from the User’s Perspective, Transportation Research Procedia, 15, pp. 721-731 (2016) [Google Scholar]
  24. E.I. Isaeva, V.N. Baskov, On the issue of the estimation of the traffic flow using technical means of measurement , Actual questions of organization of road transport and traffic safety: II intern. scientific-practical. Conf., Saratov: SSTU (2017) [Google Scholar]
  25. V. Zyryanov, V. Kocherga, I. Topilin, Investigation of Dependencies between Parameters of Two-component Models of the Kinetic Theory of Traffic Flow and Traffic Characteristics, Transportation Research Procedia, 20, pp. 746-750 (2017) [Google Scholar]
  26. T.I. Mikheeva, S.V. Mikheev, Methods and tools for the design of traffic control systems , Intellectual systems: Tr. The Sixth International Symposium (INTELS ‘2004) ed. K.A. Pupkov. - Moscow: RUSAKI, pp. 406-409 (2004) [Google Scholar]
  27. A.V. Ostroukh, N.E. Surkov, Intellectual information systems and technologies: monograph , Krasnoyarsk: Scientific and Innovation Center, 370 p. (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.