Open Access
Issue
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
Article Number 12005
Number of page(s) 6
Section Environment
DOI https://doi.org/10.1051/matecconf/202133312005
Published online 08 January 2021
  1. Anastas, P. T. and M. M. Kirchhoff; “Origins, Current Status, and Future Challenges of Green Chemistry,” Acc. Chem. Res., 35, 686–694 (2002) [CrossRef] [PubMed] [Google Scholar]
  2. Basagiannis, A. C. and X. E. Verykios; “Steam Reforming of the Aqueous Fraction of Bio-oil over Structured Ru/MgO/Al2O3 Catalysts,” Catal. Today, 127, 256–264 (2007) [CrossRef] [Google Scholar]
  3. Behrens, M., J. S. Cross, H. Akasaka and N. Ohtake; “A Study of Guaiacol, Cellulose, and Hinoki Wood Pyrolysis with Silica, ZrO2&TiO2 and ZSM-5 Catalysts,” J. Anal. Appl. Pyrolysis, 125, 178–184 (2017) [Google Scholar]
  4. Cheng, S. Y., L. Wei, J. Julson, K. Muthukumarappan and P. R. Kharel; “Upgrading Pyrolysis Bio-oil to Hydrocarbon Enriched Biofuel over Bifunctional FeNi/HZSM-5 Catalyst in Supercritical Methanol,” Fuel Process. Technol., 167, 117–126 (2017) [CrossRef] [Google Scholar]
  5. Clark, J. H.; “Green Chemistry: Challenges and Opportunities,” Green Chem., 1, 1–8 (1999) [CrossRef] [Google Scholar]
  6. Cornils, B., W. A. Herrmann and M. Beller; Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes. pp. 1–120, John Wiley & Sons, Hoboken, U.S.A. (2017) [Google Scholar]
  7. Fabbri, D., C. Torri and V. Baravelli; “Effect of Zeolites and Nanopowder Metal Oxides on the Distribution Ofchiral Anhydrosugars Evolved from Pyrolysis of Cellulose: An Analytical Study,” J. Anal. Appl. Pyrolysis, 80, 24–29 (2007) [Google Scholar]
  8. De, G. and L. Tapfer; “Formation of Copper and Silver Nanometer Dimension Clusters in Silica by the Sol–gel Process,” Appl. Phys. Lett., 68, 3820 (1996) [CrossRef] [Google Scholar]
  9. Horvath, I. T. and P. T. Anastas; “Innovations and Green Chemistry,” Chem. Rev., 107, 2169–2173 (2007) [CrossRef] [Google Scholar]
  10. Jayaprakash, J., N. Srinivasan, P. Chandrasekaran and E. K. Girija; “Synthesis and Characterization of Cluster of Grapes Like Pure and Zinc-doped CuO Nanoparticles by Sol–gel Method,” Spectrochim. Acta, Part A, 136, 1803–1806 (2015) [CrossRef] [Google Scholar]
  11. Ji, X., B. Liu, W. C. Ma, G. Y. Chen, B. B. Yan and Z. J. Cheng; “Effect of MgO Promoter on Ni-Mg/ZSM-5 Catalysts for Catalytic Pyrolysis of Lipid-Extracted Residue of Tribonema Minus,” J. Anal. Appl. Pyrolysis, 123, 278–283 (2017) [CrossRef] [Google Scholar]
  12. King, A. E., T. J. Brooks, Y. H. Tian, E. R. Batista and A. D. Sutton; “Understanding Ketone Hydrodeoxygenation for the Production of Fuels and Feedstocks from Biomass,” ACS Catal., 5, 1223–1226 (2015) [CrossRef] [Google Scholar]
  13. Lee, J. H., I. G. Lee, J. Y. Park and K. Y. Lee. “Efficient Upgrading of Pyrolysis Bio-oil over Ni-based Catalysts in Supercritical Ethanol,” Fuel, 241, 207–217 (2019) [CrossRef] [Google Scholar]
  14. Liu, Q. C., Z. Xiong, S. S. A. Syed-Hassan, Z. T. Deng, X. Y. Zhao, S. Su, J. Xiang, Y. Wang and S. Hu; “Effect of the Pre-reforming by Fe/bio-char Catalyst on a TwoStage Catalytic Steam Reforming of Bio-oil.” Fuel, 239, 282–289 (2019) [CrossRef] [Google Scholar]
  15. Ly, H. V., E. Galiwango, S. S. Kim, J. Kim, J. H. Choi, H. C. Woo and M. R. Othman; “Hydrodeoxygenation of 2Furyl Methyl Ketone as a Model Compound of Algal Saccharina Japonica bio-oil using iron phosphide catalyst,” Chem. Eng. J., 317, 302–308 (2017) [CrossRef] [Google Scholar]
  16. Müller, C., M. G. Nijkamp and D. Vogt; “Continuous Homogeneous Catalysis,” Eur. J. Inorg. Chem., 2005, 4011–4021 (2015) [CrossRef] [Google Scholar]
  17. Madelung, O. and G. K. White; Thermal Conductivity of Pure Metals And Alloys, Springer, New York, U.S.A. (1991) [Google Scholar]
  18. Mehta, M., M. H. Holthausen, I. Mallov, M. Perez, Z. W. Qu, S. Grimme and D. W. Stephan; “Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations,” Angew. Chem. Int. Ed., 54, 8250–8254 (2015) [CrossRef] [Google Scholar]
  19. Nie, L., P. M. de Souza, F. B. Noronha, W. An, T. Sooknoi and D. E. Resasco; “Selective Conversion of Mcresol to Toluene over Bimetallic Ni–Fe Catalysts,” J. Mol. Catal. A: Chem., 388–389, 47–55 (2014) [CrossRef] [Google Scholar]
  20. Oguri, T., K. Shimamura, Y. Shibuta, F. Shimojo and S. Yamaguchi; “Ab Initio Molecular Dynamics Simulation of the Dissociation of Ethanol on a Nickel Cluster: Understanding the Initial Stage of Metal-Catalyzed Growth of Carbon Nanotubes,” J. Phys. Chem. C, 117, 9983–9990 (2013) [CrossRef] [Google Scholar]
  21. Poliakoff, M., J. M. Fitzpatrick, T. R. Farren and P. T. Anastas; “Green Chemistry: Science and Politics of Change,” Science, 297, 807–810 (2002) [CrossRef] [PubMed] [Google Scholar]
  22. Lu, Q., Z. Wang, C. Q. Dong, Z. F. Zhang, Y. Zhang, Y. P. Yang and X. F. Zhu; “Selective Fast Pyrolysis of Biomass Impregnated with ZnCl2: Furfural Productiontogether with Acetic Acid and Activated Carbon as By-products,” J. Anal. Appl. Pyrolysis, 91, 273–279 (2011) [CrossRef] [Google Scholar]
  23. Rioche, C., S. Kulkarni, F. C. Meunier, J. P. Breen and R. Burch; “Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts.” Appl. Catal. B, 61, 130–139 (2005) [CrossRef] [Google Scholar]
  24. Song, C. E., D. H. Kim and D. S. Choi; “Chiral Organometallic Catalysts in Confined Nanospaces: Significantly Enhanced Enantioselectivity and Stability,” Eur. J. Inorg. Chem., 2006, 2927–2935 (2006) [CrossRef] [Google Scholar]
  25. Stefanidis, S. D., K. G. Kalogiannis, E. F. Iliopoulou, C. M. Michailof, P. A. Pilavachi and A. A. Lappas; “A Study of Lignocellulosic Biomass Pyrolysis via the Pyrolysis of Cellulose, Hemicellulose and Lignin,” J. Anal. Appl. Pyrolysis, 105, 143–150 (2014) [Google Scholar]
  26. Engineering ToolBox; Specific Heat of Some Metals, https://www.engineeringtoolbox.com/specific-heat-metals-d_152.html (2003) accessed on 26, May, 2019 [Google Scholar]
  27. Wang, Z., R. Ma, W.G. Lin and W. L. Song; “Pyrolysis of Cellulose under Catalysis of SAPO-34, ZSM-5, and Y Zeolite via the Py-GC/MS Method,” Int. J. Green Energy, 13, 853–858 (2016) [CrossRef] [Google Scholar]
  28. Xia, H., X. Yan, S. Xu, L. Yang, Y. Ge, J. Wang and S. Zuo; “Effect of Zn/ZSM-5 and FePO4Catalysts on Cellulose Pyrolysis,” J CHEM-NY, 2015, 1–11 (2015) [Google Scholar]
  29. Yao, D. D., C. F. Wu, H. P. Yang, Q. Hu, M. A. Nahil, H. P. Chen and P. T. Williams; “Hydrogen Production from Catalytic Reforming of the Aqueous Fraction of Pyrolysis Bio-oil with Modified Ni–Al Catalysts,” Int. J. Hydrogen Energy, 39, 14642–14652 (2014) [CrossRef] [Google Scholar]
  30. Li, S. Y., S. Cheng and J. S. Cross; “Homogeneous and Heterogeneous Catalysis Impact on Pyrolyzed Cellulose to Produce Bio-oil,” Catalysts (2020) printing [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.