Open Access
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
Article Number 07008
Number of page(s) 5
Section Biochemical Engineering
Published online 08 January 2021
  1. Abolpour Mofrad, S., K. Kuenzel, O. Friedrich, and D. F. Gilbert; “Optimizing Neuronal Differentiation of Human Pluripotent NT2 Stem Cells in Monolayer Cultures,” Dev. Growth Differ., 58, 664–676 (2016) [CrossRef] [Google Scholar]
  2. Coyle, D. E., J. Li, and M. Baccei; “Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons,” PLoS One, 6, e16174 (2011) [CrossRef] [Google Scholar]
  3. Donato, L. J., J. H. Suh, and N. Noy; “Suppression of Mammary Carcinoma Cell Growth by Retinoic Acid: the Cell Cycle Control Gene Btg2 is a Direct Target for Retinoic Acid Receptor Signaling,” Cancer Res., 67, 609–615 (2007) [CrossRef] [Google Scholar]
  4. Hill, E. J., E. K. Woehrling, M. Prince, and M. D. Coleman; “Differentiating Human NT2/D1 Neurospheres as a Versatile In Vitro 3D Model System for Developmental Neurotoxicity Testing,” Toxicology, 249, 243–250 (2008) [CrossRef] [Google Scholar]
  5. Hirschhaeuser, F., H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart; “Multicellular Tumor Spheroids: An Underestimated Tool Is Catching Up Again,” J. Biotechnol., 148, 3–15 (2010) [CrossRef] [PubMed] [Google Scholar]
  6. Hsiao, C. and S. P. Palecek; “Microwell Regulation of Pluripotent Stem Cell Self-renewal and Differentiation,” B ioNanoSci., 2, 266–276 (2012) [CrossRef] [Google Scholar]
  7. Kurosawa H.; “Methods for Inducing Embryoid Body Formation: in vitro Differentiation System of Embryonic Stem Cells,” J Biosci Bioeng., 103, 389–398 (2007) [CrossRef] [Google Scholar]
  8. Kondziolka D. and L. Wechsler; “Stroke Repair with Cell Transplantation: Neuronal Cells, Neuroprogenitor Cells, and Stem Cells,” Neurosurg. Focus, 24, E13 (2008) [CrossRef] [Google Scholar]
  9. Nakazawa, K., Y. Izumi, J. Fukuda, and T. Yasuda; “Hepatocyte Spheroid Culture on a Polydimethylsiloxane Chip having Microcavities,” J. Biomater. Sci. Polym. Edi., 17, 859-873 (2006) [CrossRef] [Google Scholar]
  10. Sakai, Y. and K. Nakazawa; “Technique for the Control of Spheroid Diameter using Microfabricated Chips,” Acta Biomater., 3, 1033–1040 (2007) [CrossRef] [Google Scholar]
  11. Sakai, Y., S. Yoshida, Y. Yoshiura, R. Mori, T. Tamura, K. Yahiro, H. Mori, Y. Kanemura, M. Yamasaki, and K. Nakazawa; “Effect of Microwell Chip Structure on Cell Microsphere Production of Various Animal Cells,” J. Biosci. Bioeng., 110, 223–229 (2010) [CrossRef] [Google Scholar]
  12. Schug, T. T., D. C. Berry, N. S. Shaw, S. N. Travis, and N. Noy; “Opposing Effects of Retinoic Acid on Cell Growth Result from Alternate Activation of Two Different Nuclear Receptors,” Cell, 129, 723–733 (2007) [CrossRef] [Google Scholar]
  13. Serra, M., S. B. Leite, C. Brito, J. Costa, M. J. T. Carrondo, and P. M. Alves; “Novel Culture Strategy for Human Stem Cell Proliferation and Neuronal Differentiation,” J. Neurosci. Res., 85, 3557–3566 (2007) [CrossRef] [Google Scholar]
  14. Serra, M., C. Brito, E. M. Costa, M. F. Q. Sousa, and P. M. Alves; “Integrating Human Stem Cell Expansion and Neuronal Differentiation in Bioreactors,” BMC Biotechnol., 9, 82 (2009) [CrossRef] [Google Scholar]
  15. Zhang, S., M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, and T. Takeuchi; “Phosphorescent LighteEmitting Iridium Complexes Serve as a HypoxiaSensing Probe for Tumor Imaging in Living Animals,” Cancer Res., 70, 4490–4498 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.