Open Access
Issue
MATEC Web Conf.
Volume 329, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2020)
Article Number 03072
Number of page(s) 9
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/202032903072
Published online 26 November 2020
  1. A. Alberich-Bayarri, L. Marti-Bonmati, R. Sanz-Requena, E. Belloch, D. Moratal, In vivo trabecular bone morphologic and mechanical relationship using high-resolution 3-T MRI, Am. J. Roentgenol, 191(3), 721-726 (2008), doi:10.2214/AJR.07.3528. [Google Scholar]
  2. M. Prez, P.-A. Vendittoli, M. Lavigne, N. Nuo, Bone remodeling in the resurfaced femoral head: effect of cement mantle thickness and interface characteristic, Med. Eng. Phys., 36(2), 185-195 (2014), doi:10.1016/j.medengphy.2013.10.013. [Google Scholar]
  3. A.N. Natali, P.G. Pavan, A.L. Ruggero, Evaluation of stress induced in peri-implant bone tissue by misfit in multi-implant prosthesis, Dent. Mater. Off. Publ. Acad. Dent. Mater., 22(4), 388-395 (2006), doi:10.1016/j.dental.2005.08.001. [Google Scholar]
  4. T. Baltina, N. Ahmetov, O. Sachenkov, A. Fedyanin, I. Lavrov, The Influence of Hindlimb Unloading on Bone and Muscle Tissues in Rat Model, BioNanoScience, 7(1), 67-69 (2017), doi:10.1007/s12668-016-0288-8. [Google Scholar]
  5. O.A. Sachenkov, R.F. Hasanov, P.S. Andreev, Yu.G. Konoplev, Numerical study of stress-strain state of pelvis at the proximal femur rotation osteotomy, Russ. J. Biomech., 20(3), 220-232 (2016), doi:10.15593/RJBiomech/2016.3.06. [Google Scholar]
  6. O. Sachenkov, R. Hasanov, P. Andreev, Y. Konoplev, Determination of muscle effort at the proximal femur rotation osteotomy, IOP Conf. Ser. Mater. Sci. Eng., 158(1), 012079 (2016). [CrossRef] [Google Scholar]
  7. R.A. Kayumov, I.Z. Muhamedova, B.F. Tazyukov, F.R. Shakirzjanov, Parameter determination of hereditary models of deformation of composite materials based on identification method, J. Phys. Conf. Ser., 973(1), 012006 (2018), doi:10.1088/1742-6596/973/1/012006. [Google Scholar]
  8. R.A. Kayumov, Structure of nonlinear elastic relationships for the highly anisotropic layer of a nonthin shell, Mech. Compos. Mater., 35(5), 409-418 (1999), doi:10.1007/BF02329327. [Google Scholar]
  9. V.V. Yaikova, Gerasimov O.V., A.O. Fedyanin, M.A. Zaytsev, M.E. Baltin, T.V. Baltina, O.A. Sachenkov, Automation of bone tissue histology, Front. Phys., 7(JUN), 91 (2019), doi:10.3389/fphy.2019.00091. [Google Scholar]
  10. N.V. Kharin, O.V. Vorobyev, D.V. Berezhnoi, O.A. Sachenkov, Construction of a representative model based on computed tomography, PNRPU Mech. Bull., 3, 95-102 (2018), doi:10.15593/perm.mech/2018.3.10. [Google Scholar]
  11. P. Marcián, J. Wolff, L. Horáčková, J. Kaiser, T. Zikmund, L. Borák, Micro finite element analysis of dental implants under different loading conditions, Comput. Biol., 96, 157-165 (2018), doi:10.1016/j.compbiomed.2018.03.012. [Google Scholar]
  12. N. Kharin, O. Vorob’yev, P. Bolshakov, O. Sachenkov, Determination of the orthotropic parameters of a representative sample by computed tomography, J. Phys. Conf. Ser., 1158(3), 032012 (2019). [Google Scholar]
  13. O.A. Sachenkov, O.V. Gerasimov, E.V. Koroleva, D.A. Mukhin, V.V. Yaikova, I.F. Akhtyamov, F.V. Shakirova, D.A. Korobeynikova, H.Ch. Khan, Building the inhomogeneous finite element model by the data of computed tomography, Russ. J. Biomech., 22(3), 291-303 (2018), doi:10.15593/RJBiomeh/2018.3.05. [Google Scholar]
  14. A.A. Kichenko, V.M. Tverier, Y.I. Nyashin, A.A. Zaborskikh, Experimental determination of the fabric tensor for cancellous bone tissue, Russ. J. Biomech., 15(4), 66-81 (2011). [Google Scholar]
  15. A. Ridwan-Pramana, P. Marcian, L. Borak, N. Narra, T. Forouzanfar, J. Wolff, Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach, PLoS ONE, 12, e0179325 (2017), doi:10.1371/journal.pone.0179325. [Google Scholar]
  16. G. Maquer, S.N. Musy, J. Wandel, T. Gross, P.K. Zysset, Bone Volume Fraction and Fabric Anisotropy Are Better Determinants of Trabecular Bone Stiffness Than Other Morphological Variables, J. Bone Miner. Res., 30(6), 1000-1008 (2015), doi:10.1002/jbmr.2437. [Google Scholar]
  17. O. Gerasimov, F. Shigapova, Y. Konoplev, O. Sachenkov, The evolution of the bone in the half-plane under the influence of external pressure, IOP Conf. Ser. Mater. Sci. Eng., 158(1), 012037 (2016). [Google Scholar]
  18. A. Tveito, K.H. Jæger, M. Kuchta, K.-A. Mardal, M.E. Rognes, A cell-based framework for numerical modeling of electrical conduction in cardiac tissue, Front. Phys., 5, 48 (2017), doi:10.3389/fphy.2017.00048. [Google Scholar]
  19. G. Legrain, P. Cartraud, I. Perreard, N. Mos, An x-fem and level set computational approach for image-based modelling: application to homogenization, Int. J. Numer. Methods Eng., 86(7), 915-934 (2011), doi:10.1002/nme.3085. [Google Scholar]
  20. L. Giovannelli, J.J. Rodenas, J.M. Navarro-Jimenez, M. Tur, Direct medical image-based Finite Element modelling for patient-specific simulation of future implants, Finite Elem. Anal. Des., 136, 37-47 (2017), doi:10.1016/j.finel.2017.07.010. [Google Scholar]
  21. T.A. Carniel, B. Klahr, E.A. Fancello, On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles, J. Mech. Behav. Biomed., 91, 131-138 (2019), doi:10.1016/j.jmbbm.2018.12.003. [Google Scholar]
  22. L. Grassi, E. Schileo, F. Taddei, L. Zani, M. Juszczyk, L. Cristofolini, Accuracy of finite element predictions in sideways load configurations for the proximal human femur, J. Biomech., 45(2), 394-399 (2012), doi:10.1016/j.jbiomech.2011.10.019. [Google Scholar]
  23. O.V. Gerasimov, D.V. Berezhnoi, P.V. Bolshakov, E.O. Statsenko, O.A. Sachenkov, Mechanical model of a heterogeneous continuum based on numerical-digital algorithm processing computer tomography data, Russ. J. Biomech., 23(1), 87-97 (2019). [Google Scholar]
  24. P. Marcián, Z. Florian, L. Horáčková, J. Kaiser, L. Borák, Microstructural finite-element analysis of influence of bone density and histomorphometric parameters on mechanical behavior of mandibular cancellous bone structure, SSP, 258, 362-365 (2017), doi:10.4028/www.scientific.net/SSP.258.362. [Google Scholar]
  25. F. Marwa, E.Y. Wajih, L. Philippe, M. Mohsen, Improved USCT of Paired Bones Using Wavelet-based Image, IJIGSP, 10(9), 1-9 (2018), doi:10.5815/ijigsp.2018.09.01. [Google Scholar]
  26. A.A. Kichenko, V.M. Tverier, Y.I. Nyashin, E.Y. Simanovskaya, A.N. Elovikova, Formation and elaboration of the classical theory of bone tissue structure description, Russ. J. Biomech., 12(1), 66-85 (2008). [Google Scholar]
  27. E. Nadal, J.J. Rodenas, J. Albelda, M. Tur, J.E. Tarancon, F.J. Fuenmayor, Efficient finite element methodology based on cartesian grids: application to structural shape optimization, Abstr. Appl. Anal., 2013, 953786 (2013), doi:10.1155/2013/953786. [Google Scholar]
  28. O. Marco, R. Sevilla, Y. Zhang, J.J. Rodenas, M. Tur, Exact 3d boundary representation in finite element analysis based on Cartesian grids independent of the geometry, Int. J. Numer. Methods Eng., 103(6), 445-468 (2015), doi:10.1002/nme.4914. [Google Scholar]
  29. O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24(2), 337-357 (1987), doi:10.1002/nme.1620240206. [Google Scholar]
  30. K.P.K. Mithun, A. Gauhar, M.R. Mohammad, A.S.M.H. Delowar, Automatically Gradient Threshold Estimation of Anisotropic Diffusion for Meyer’s Watershed Algorithm Based Optimal Segmentation, IJIGSP, 6(12), 26-31 (2014), doi:10.5815/ijigsp.2014.12.04. [Google Scholar]
  31. K.P.K. Mithun, M.R. Mohammad, Metal Artifact Reduction from Computed Tomography (CT) Images using Directional Restoration Filter, IJITCS, 6(6), 47-54 (2014), doi:10.5815/ijitcs.2014.06.07. [Google Scholar]
  32. M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, E. Rank, The finite cell method for bone simulations: verification and validation, Biomech. Model. Mechanobiol., 11(3-4), 425-437 (2012), doi:10.1007/s10237-011-0322-2. [Google Scholar]
  33. G. Hettich, R.A. Schierjott, H. Ramm, H. Graichen, V. Jansson, M. Rudert, F. Traina, T.M. Grupp, Method for quantitative assessment of acetabular bone defects, J. Orthop. Res., 37(1), 181-189 (2018), doi:10.1002/jor.24165. [Google Scholar]
  34. T.N. Chikova, A.A. Kichenko, V.M. Tverier, Y.I. Nyashin, Biomechanical modelling of trabecular bone tissue in remodelling equilibrium, Russ. J. Biomech., 22(3), 245-253 (2018), doi:10.15593/RJBiomeh/2018.3.01. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.