Open Access
MATEC Web Conf.
Volume 324, 2020
3rd International Conference “Refrigeration and Cryogenic Engineering, Air Conditioning and Life Support Systems” (CRYOGEN 2019)
Article Number 03002
Number of page(s) 8
Section Air Conditioning and Life Support Systems
Published online 09 October 2020
  1. United Nations Framework Convention on Climate Change (ed.) Adoption of the Paris Agreement, number FCCC/CP/2015/L.9/Rev.1 [Google Scholar]
  2. D. Millar, G. Tonolo, U. Ziebinska, Energy efficiency indicators – HIGHLIGHTS (International Energy Agency, 2016) [Google Scholar]
  3. M. Lenzen, Künstliche Intelligenz, Was sie kann & was uns erwartet (C.H. Beck, 2018) [Google Scholar]
  4. R. Adey, D. Sriram, Applications of artificial intelligence to engineering problems, report 5113597 (1987) [Google Scholar]
  5. S.A. Kalogirou, Renew. Sust. Energy Reviews, 5 (2001) [Google Scholar]
  6. L. Magnier, F. Haghighat, Build. Env., 45 (2010) [Google Scholar]
  7. A. Kusiak, G. Xu, Energy, 42 (2012) [Google Scholar]
  8. M. Mohanraj, S. Jayaraj, C. Muraleedharan, Renew. Sust. Energy Reviews, 16 (2012) [Google Scholar]
  9. N. Nassif, Build. Sim., 7 (2014) [Google Scholar]
  10. M. W. Ahmad, M. Mourshed, B. Yuce, Y. Rezgui, Build. Sim., Springer Nature, 9 (2016) [Google Scholar]
  11. A. Afram, F. Janabi-Sharifi, A.S. Fung, K. Raahemifar, Ener. and Build., 141 (2017) [Google Scholar]
  12. J. Liang, R. Du, Int. J. Refrig., 30 (2007) [Google Scholar]
  13. M. Najafi, Fault Detection and Diagnosis in Building HVAC Systems (University of California, Berkely, PhD thesis, 2010) [Google Scholar]
  14. S.R. West, Y. Guo, X.R. Wang, J. Wall, Automated Fault Detection and Diagnosis of HVAC Subsystems Using Statistical Machine Learning. (Proceedings of Building Simulation. 12th Conference of International Building Performance Simulation Association, Sydney, 2011) [Google Scholar]
  15. B. Narayanaswamy, B. Balaji, R. Gupta, Y. Agarwal, Data Driven Investigation of Faults in HVAC Systems with Model, Cluster and Compare (MCC), BuildSys’14, Memphis TN, USA (2014) [Google Scholar]
  16. Z. Du, B. Fan, X. Jin, J. Chi, Build. Environ., 73 (2014) [Google Scholar]
  17. D.B. Araya, K. Grolinger, H.F. ElYamany, M.A. Capretz, G. Bitsuamlak, Ener. Build., 144 (2017) [Google Scholar]
  18. A. Hantsch, R. Mai Einfluss instationärer Raumluftströmung auf die thermische Behaglichkeit im Aufenthaltsbereich (CEGA-Congress für Experten der TGA, Baden-Baden, 2018) [Google Scholar]
  19. H. Kuchling, Taschenbuch der Physik, 16th Ed. (1996) [Google Scholar]
  20. A. Hantsch, S. Döge, Assessment of micro-organism growth risk on filters with machine learning (13th REHVA World Congress CLIMA 2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.