Open Access
MATEC Web Conf.
Volume 323, 2020
10th International Conference of Advanced Models and New Concepts in Concrete and Masonry Structures (AMCM 2020)
Article Number 01016
Number of page(s) 8
Section Adnanced Models and New Concepts in Concrete Structures
Published online 05 October 2020
  1. T.Z. Błaszczyński, M.R. Król, Geopolymers in Construction, Civ. Env. Eng. Rep. 16, 1, 25–40 (2015). [CrossRef] [Google Scholar]
  2. Z. Giergiczny, Fly ash and slag, Cem. Concr. Res. 124, 105826 (2019). [Google Scholar]
  3. D.M Gil, G.L. Golewski, Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in mode I, IOP Conf. Ser.: Mater. Sci. Eng. 416, 012065 (2018). [Google Scholar]
  4. D.M. Gil, G.L. Golewski, Potencial of siliceous fly ash and silica fume as a substitute of binder in cementitious concrete, E3S Web Conf. 49, 00030 (2018). [Google Scholar]
  5. G.L. Golewski, A new principles for implementation and operation of foundations for machines: A review of recent advances, Struct. Eng. Mech. 71, 3, 317–327 (2019). [Google Scholar]
  6. G.L. Golewski, A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads, Compos. Struct. 223, 110939 (2019). [Google Scholar]
  7. G.L. Golewski, An analysis of fracture toughness in concrete with fly ash addition considering all models of cracking, IOP Conf. Ser.: Mater. Sci. Eng. 416, 012029 (2018). [Google Scholar]
  8. G.L. Golewski, T. Sadowski, A study of mode III fracture toughness in young and mature concrete with fly ash additive, Sol. State Phenom. 254, 120–125 (2016). [Google Scholar]
  9. G.L. Golewski,T. Sadowski, Experimental investigation and numerical modelling fracture processes under mode II in concrete composites containing fly-ash at early age, Sol. State Phenom. 188, 158–163 (2012). [CrossRef] [Google Scholar]
  10. G.L. Golewski, Effect of curing time on the fracture toughness of fly ash concrete composites, Compos. Struct. 185, 105–112 (2018). [CrossRef] [Google Scholar]
  11. G.L. Golewski, Energy savings associated with the use of fly ash and nanoadditives in the cement composition, Energies 13, 9, 2184 (2020). [CrossRef] [Google Scholar]
  12. G.L. Golewski, Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems, Constr. Build. Mater. 213, 142–155 (2019). [CrossRef] [Google Scholar]
  13. G.L. Golewski, Studies of natural radioactivity of concrete with siliceous fly ash addition, Cem. Wapno Beton 2, 106–114 (2015). [Google Scholar]
  14. G. Golewski, T. Sadowski, Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates, Brittle Matrix Compos. 8, 537–546 (2006). [Google Scholar]
  15. E.E. Ikponmwosa, S.O. Ehikhuenmen, K.K. Irene, Comparative study and empirical modelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete, Acta Polytech. 59, 6, 560–572 (2019). [Google Scholar]
  16. T.T. Le, S.A. Austin, S. Lim, R.A. Buswell, A.G.F. Gibb, T. Thorpe, Mix design and fresh properties for high-performance printing concrete, Mater. Struct. 45, 8, 1221–1232 (2012). [CrossRef] [Google Scholar]
  17. H. Lu, X. Song, R. Wang, H. Chen, Design and Control of Movable Cement 3D Printing System, In: Proceedings of the 31st Chinese Control and Decision Conference (2019 CCDC). 3-5 June, 2019, Nanchang, China. 2019 Chinese Control And Decision Conference (CCDC). Nanchang, China, 6/3/2019-6/5/2019. Piscataway, NJ: IEEE, 1239–1242. (2019) [Google Scholar]
  18. K. Pacewicz, A. Sobotka,Ł. Gołek, Characteristic of materials for the 3D printed building constructions by additive printing, MATEC Web Conf. 222, 3, 1013 (2018). [Google Scholar]
  19. C.P. Suvash, D.T. Yi Wei, P. Biranchi, J.T. Ming, Fresh and hardened properties of 3D printable cementitious materials for building and construction, Arch. Civ. Mech. Eng. 18, 1, 311–319 (2018). [Google Scholar]
  20. Ł. Sadowski, Results Obtained at the Nano-scale, w: Multi-scale approach for layered systems made of cement composites, ed. Sadowski Łukasz, t. 101.: SPRINGER (Advanced Structured Materials), 149–154 (2019). [Google Scholar]
  21. G. de Schutter, K. Lesage, V. Mechtcherine, V.N. Nerella, G. Habert, G I. Agusti-Juan, Vision of 3D printing with concrete Technical, economic and environmental potentials, Cem. Concr. Res. 112, 25–36 (2018). [Google Scholar]
  22. N.T. Seghir, M. Mellas, Ł. Sadowski, A. Zak, Effects of marble powder on the properties of the air-cured blended cement paste, J. Clean. Prod. 183, 858–868 (2018). [Google Scholar]
  23. B. Szostak, G.L. Golewski, Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash, IOP Conf. Ser.: Mater. Sci. Eng. 416, 12105 (2018). [Google Scholar]
  24. N. Toniolo, V. Bednarzig, J.A. Roether, H. Rost, A.R. Boccaccini, Advancing processing technologies for designed geopolymers: 3D printing and mechanical machining, Interceram - Int. Ceram. Rev. 68, 1-2, 18–21 (2019). [Google Scholar]
  25. J. van der Putten, M. Deprez, V. Cnudde, G. de Schutter, K. van Tittelboom, Microstructural characterization of 3D printed cementitious materials, Materials 12, 18 (2019). [Google Scholar]
  26. T. Xie, G. Yang, X. Zhao, J. Xu, C. Fang, A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials, J. Clean. Prod. 251, 119752 (2020). [Google Scholar]
  27. J. Ye, M. Zubair, S. Wang, Y. Cai, P. Zhang, Power production waste, Wat. Env. Res. 91, 10, 858–868 (2019). [Google Scholar]
  28. P. Zhang, J. Wan, K. Wang, Q. Li, Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state of the art review, Constr. Build. Mater. 148, 648–658 (2017). [CrossRef] [Google Scholar]
  29. F. Zou, C. Hu, F. Wang, Y. Ruan, S. Hu, Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder, J. Clean. Prod. 244, 118566 (2020). [Google Scholar]
  30. PN-EN 1015-11: Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar. [Google Scholar]
  31. PN-EN 12390-2: Testing hardened concrete. Making and curing specimens for strength tests. [Google Scholar]
  32. PN-EN 196-3: Methods of testing cement. Determination of setting times and soundness. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.