Open Access
Issue
MATEC Web Conf.
Volume 323, 2020
10th International Conference of Advanced Models and New Concepts in Concrete and Masonry Structures (AMCM 2020)
Article Number 01015
Number of page(s) 10
Section Adnanced Models and New Concepts in Concrete Structures
DOI https://doi.org/10.1051/matecconf/202032301015
Published online 05 October 2020
  1. United States Army Corps of Engineers, Suppressive Shields Structural Design and Analysis Handbook (1977). [Google Scholar]
  2. P. Barr, Guidelines for the Design and Assestment of Concrete Structures subjected to Impact (United Kingdom Atomic Energy Authority, Warrington,1988). [Google Scholar]
  3. J. Eibl, K. Kreuser, Versuche zum Verhalten unterschiedlicher Stahlsorten in stoßbeanspruchten Platten (Deutschen Ausschusses für Stahlbeton – DAfStb – Verlag für Architektur und technische Wissenschaften, 1986). [Google Scholar]
  4. A. Saarenheimo, K. Calonius, M. Tuomala, Bending and punching studies on impact loaded Plate ( In: Transactions of the 23rd Conference of Structural Mechanics in Reactor Technology (SMiRT 23) . Manchster, United Kingdom: International Association for Structural Mechanics in Reactor Technology (IASMiRT), 10.–24. August 2015). [Google Scholar]
  5. C. Heckötter, J. Sierevs, Weiterentwicklung der Analysemethodik zur Berücksichtigung komplexer Lastannahmen bei hochdynamischen Einwirkungen auf Stahlbetonstrukturen (Gesellschaft für Anlagen und Reaktorsicherheit – GRS, 2016). [Google Scholar]
  6. K. Schellenberg, On the Design of Rockfall Protection Galleries (ETH Zürich, Dissertation, 2009). [Google Scholar]
  7. I. Curosu, V. Mechtcherine, M. Hering, M. Curbach, Mineral-bonded Composites for Enhanced structural impact safety – Overview of the format, goals and achievements of the Research training Group GRK 2250 (Eds: G. Pijaudier-Cabot, P. Grassl, C. La Borderie, In: Proccedings of 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Bayonne, Frankreich, 23.–26. June 2019). [Google Scholar]
  8. C. Cherif, Zierold, K., M. Curbach, M. Hering, Textilverstärkte Betonkonstruktionen für Impaktbeanspruchungen (final report: IGF 19009 BG, Dresden, 2019). [Google Scholar]
  9. A. Peled, B. Mobasher, A. Bentur, Textile Reinforced Concrete (CRC Press, 2017). [CrossRef] [Google Scholar]
  10. L. N. Koutas, Z. Tetta, D. A. Bournas, T. C. Triantafillou, Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review. J. Compos. Constr. 23, (2019). [Google Scholar]
  11. C. Carloni, D. A. Bournas, F. G. Carozzi, T. D’Antino, G. Fava, F. Focacci, G. Giacomin, G. Mantegazza, C. Pellegrino, C. Perinelli, C. et al., Fiber Reinforced Composites with Cementitious (Inorganic) Matrix. In: Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures – State-of-the-Art Report of the RILEM Technical Committee 234-DUC 2016; Pellegrino, C., Sena-Cruz, J., Eds.; Springer: Dordrecht, The Netherlands, 2016; Chapter 9; pp. 349–39. [Google Scholar]
  12. A. Schumann, S. May, M. Curbach, Experimental Study on Flexural Strengthening of Reinforced Concrete Structures with Carbon Reinforced Concrete (Eds: W. Derkowski, P. Gwozdziewicz, L. Hojdys, P. Krajewski, M. Pantak, In: Proc. of the fib Symp. 27.–29.5.2019 in Krakau, Poland, 2019). [Google Scholar]
  13. S. Scheerer, R. Zobel, E. Müller, T. Senckpiel-Peters, A. Schmidt, M. Curbach, Flexural Strengthening of RC Structures with TRC—Experimental Observations, Design Approach and Application. Appl. Sci. 9, 1322 (2019). [Google Scholar]
  14. S. May, A. Schumann, S. Bergmann, M. Curbach, J. Hegger, Shear Strengthening of Reinforced Structures with Carbon Reinforced Concrete (Eds: W. Derkowski, P. Gwozdziewicz, L. Hojdys, P. Krajewski, M. Pantak, In: Proc. of the fib Symp. 27.– 29.5.2019 in Krakau, Poland, 2019). [Google Scholar]
  15. M. Hering, T. Kühn, F. Bracklow, M. Curbach, Impact experiments with reinforced concrete plates of different thicknesses, Struct. Concr. (2019). [Google Scholar]
  16. DIN Deutsches Institut für Normung e.V. (August 2009). DIN 488-1 Reinforcing steels – Part 1: Grades, properties, marking. [Google Scholar]
  17. PAGEL, PAGEL TUDALIT-FEINBETON® – Technical data sheet 0606 (http://www.pagel.com/all/pdf/gb/tf10_gb.pdf, Germany, 2019). [Google Scholar]
  18. https://tu-dresden.de/bu/bauingenieurwesen/imb/labor/ausstattung/falltum;Retrieved 14.10.2019 [Google Scholar]
  19. M. Just, M. Curbach, T. Kühn, M. Hering, Bauteilverhalten unter stoßartiger Beanspruchung durch aufprallende Behälter (Flugzeugtanks) – Phase 1A: Maßstabseffekte bei stoßartiger Beanspruchung. Report of GRS research project no. 1501438 (IMB TU Dresden, Germany, 2016), DOI: 10.2314/GBV:868615218. [Google Scholar]
  20. M. Hering, T. Kühn, M. Curbach, Bauteilverhalten unter stoßartiger Beanspruchung durch aufprallende Behälter (Flugzeugtanks) – Phase 1B: Quantifizierung der Schädi-gungen des Betongefüges, Teilprojekt: Fallturmversuche. Report of GRS research project no. 1501479 (IMB TU Dresden, Germany, 2017), DOI: 10.2314/GBV:100128142X. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.