Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11084
Number of page(s) 6
Section Microstructure - Properties Relationships
Published online 12 October 2020
  1. Fullwood, W., Niezgoda, S., Kalidindi, S., “Microstructure reconstructions from 2-point statistics using phase-recovery algorithms”, Acta Materialia 56(5):942:948, 2008. [CrossRef] [Google Scholar]
  2. Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image Recognition”, arXiv preprint arXiv:1409.1556. 2014. [Google Scholar]
  3. Gatys, L., Ecker A.S. and Bethge, M., “Texture synthesis using convolutional neural networks. In Advances in Neural Information Processing Systems”, (pp. 262-270). 2015 [Google Scholar]
  4. Lubbers, N., Lookman, T., Barros, K., “Inferring low-dimensional microstructure representations using convolutional neural networks”, arXiv:1611.02764v1. 2016 [Google Scholar]
  5. Larsen A.B.L, Sonderby, S, Larochelle, H. and Winther, O., “Autoencoding beyond pixels using a learned similarity metric”, arXiv:1512.09300v2 [cs.LG] 10 Feb 2016 [Google Scholar]
  6. LeCun Y, Bengio Y., “Convolutional networks for images, speech, and time series”, The Handbook of Brain Theory and Neural Networks. Apr; 3361(10):1995. [Google Scholar]
  7. Erhan, D., Courville, A., and Bengio, Y., “Understanding representations learned in deep architectures. Department d’Informatique et Recherche Operationnelle, University of Montreal, QC, Canada, Tech. Rep, 1355, 2010. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.