Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 11064
Number of page(s) 7
Section Microstructure - Properties Relationships
Published online 12 October 2020
  1. BANERJEE D, GOGIA A.K., NANDI T.K., JOSHI V.A.. A new ordered orthorhombic phase in a Ti3Al-Nb alloy. Acta Metallurgical, 1988, 36 (4): 871-882. [CrossRef] [Google Scholar]
  2. DEY S.R., SUWAS S. FUNDENBERGER J.J., RAY R.K.. Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two- phase alloy Ti-22Al-25Nb. Intermetallics, 2009, 17 (8): 622-633. [Google Scholar]
  3. TANG F, EMURA S. HAGIWARA M. Tensile properties of Tungsten-modified orthorhombic Ti-22Al-20Nb-2W alloy. Scripta Materialia, 2001, 44 (4): 671-676. [Google Scholar]
  4. MAO Y, LI S.Q., ZHANG J.W., PENG J.H., ZOU D.X., ZHONG Z.Y.. Microstructure and tensile properties of orthorhombic Ti-Al-Nb-Ta alloys. Intermetallics, 2000, 8 (5-6): 659-662. [Google Scholar]
  5. D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi. A new ordered orthorhombic phase in a Ti3Al-Nb alloy. Acta Metallurgica, 1988, 36 (4): 871. [Google Scholar]
  6. J. Kumpfert. Intermetallic alloys based on orthorhombic titanium aluminide. Advanced Engineering Materials, 2001, 3 (11): 851. [Google Scholar]
  7. A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, J.M. Franchet. Microstructure and mechanical properties of orthorhombic alloys in the Ti-Al-Nb system. Intermetallics, 1998, 6 (7): 741. [Google Scholar]
  8. H.T. Kestner-Weykamp, C.H. Ward, T.F. Broderick, M.J. Kaufman. Microstructures and phase relationships in the Ti3Al+Nb system. Scripta Metallurgica, 1989, 23 (10): 1697. [Google Scholar]
  9. J.-L. Zhang, H.-Z. Guo, H.-Q. Liang, Hot deformation behavior and process parameter optimization of Ti22Al25Nb using processing map, Rare Metals, 35 (2016) 118-126. [Google Scholar]
  10. H. Wu, P. Zhang, H. Zhao, L. Wang, A. Xie. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti2AlNb-based alloys. Applied Surface Science, 2011, 257 (6): 1835. [Google Scholar]
  11. R.G. Rowe, D.G. Konitzer, A.P. Woodfield, J.C. Chesnutt. Tensile and creep behavior of ordered orthorhombic Ti2A1Nb-based alloys. MRS Proceedings, 2011; 213. [Google Scholar]
  12. Yong-Sheng He, Rui Hu, Wen-zhong Luo, Tao He, Xiang-Hong Liu. Oxidation behavior of a novel multi-element alloyed Ti2AlNb-based alloy in the temperature range of 650°C to 850°C. Rare Metals. 2018, 37 (10): 838-845 [Google Scholar]
  13. Yong-Sheng He, Rui Hu, Wen-zhong Luo, Tao He, Yun-Jin Lai, Yu-Jun Du, Xiang-Hong Liu. Microstructural evolution and creep deformation behavior of a novel Ti-22Al-25Nb-1Mo-1V-1Zr-0.2Si (at, %) orthorhombic alloy. Transaction of Nonferrous Metals Society of China. 2019, 29 (2): 313-321. [Google Scholar]
  14. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle. Part. The Microstructural Evolution in Ti-Al-Nb O+BCC Orthorhombic Alloys. Metallurgical and Materials Transactions A. 1999, 30 (9): 2305-2323 [Google Scholar]
  15. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, and R. Wheeler: Structural Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA. 1997, 795-804 [Google Scholar]
  16. C.J. Cowen, C.J. Boehlert. Microstructure, Creep, and Tensile Behavior of a Ti-21Al-29Nb (at. %) Orthorhombic+B2 Alloy. Intermetallics. 2006, 14 (4): 412-422 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.