Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 12036 | |
Number of page(s) | 9 | |
Section | Microstructure Evolution | |
DOI | https://doi.org/10.1051/matecconf/202032112036 | |
Published online | 12 October 2020 |
Texture evolution during Isothermal compression process of Ti-22Al-25Nb alloy in B2 phase region
a State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
2 Defense Technoloies Innovation Center of precision forging and ring rolling, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
In the present work, the hot deformation behavior, dynamic recovery, dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy on the conditions of 1100°C with four different thickness reductions (35%, 50%, 65% and 80%) are investigated by isothermal compression testing on Gleeble-3500 thermo-mechanical simulator. The strain rate is 0.1mm/s-1. Subsequently, metallographic observation and EBSD analysis are carried out. The results show that during the hot deformation, the dynamic recovery (DRV) and dynamic recrystallization (DRX) strongly affect the microstructure and texture evolution. It is observed that with the strain increasing, the intensity of ηbcc-fiber increases firstly (crystallographic fiber axis <100> parallel to the compression direction). When the thickness reduction reaches to 80%, the intensity of <001> pole becomes stronger expectedly. Whereas the ηbcc-fiber transform into cube components ({100} <001>) unexpectedly. In addition, as the strain increases through 35%-80%, the fraction of large misorientation grain boundaries and fraction of DRX grains gradually increase due to continuous recrystallization. The evolution mechanism of grain orientations and texture during the DRX process will be discussed.
Key words: Isothermal compression / B2 phase / texture / dynamic recrystallization / Ti-22Al-25Nb
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.