Open Access
Issue
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 05015
Number of page(s) 6
Section Biomedical and Healthcare Applications
DOI https://doi.org/10.1051/matecconf/202032105015
Published online 12 October 2020
  1. Cui FZ, Zhang Y, Wen HB, Zhu XD. Microstructural evolution in external callus of human long bone. Mater. Sci. Eng. 2000; C11: 27-33. [Google Scholar]
  2. Schindeler A, Mcdonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 2008; 19: 459-66. [CrossRef] [Google Scholar]
  3. Slaets E, Carmeliet G, Naert I, Duyck J. Early cellular responses in cortical bone healing around unloaded titanium implants: An animal study. J Periodontol. 2006; 77: 1015-24. [CrossRef] [Google Scholar]
  4. Slaets E, Naert I, Duyck. Early cortical bone healing around loaded titanium implants: a histological study in the rabbit. J. Clin Oral Impl Res. 2009; 20: 126-34. [CrossRef] [Google Scholar]
  5. Gepreel MAH, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2013; 20: 407-15. [CrossRef] [Google Scholar]
  6. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng. 1998; A243: 231-6. [CrossRef] [Google Scholar]
  7. Hussein AH, Gepreel MAH, Gouda MK, Hefnawy AM, Kandil SH. Biocompatibility of new Ti-Nb-Ta base alloys. Mater. Sci. Eng. 2016; C61: 574-8. [CrossRef] [Google Scholar]
  8. Kopova I, Strasky J, Harcuba P, Landa M, Janecek M, Bacakova L. Newly developed Ti-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater. Sci. Eng. 2016; C60: 230-8. [CrossRef] [Google Scholar]
  9. Niinomi M, Liu Y, Nakai M, Liu H, Li H. Biomedical titanium alloys with Young’s moduli close to that of cortical bone. Regen Biomater. 2016; 3(3): 173-85. [CrossRef] [Google Scholar]
  10. Niinomi M, M. Nakai. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011; ID 836587. [Google Scholar]
  11. Sumitomo N, Noritake K, Hattori T, Morikawa K, Niwa S, Sato K, Niinomi M. Experiment study on fracture fixation with low rigidity titanium alloy. J Mater Sci Mater Med. 2008; 19: 1581-1586. [CrossRef] [Google Scholar]
  12. Slaets E, Carmeliet G, Naert I, Duyck J. Early trabecular bone healing around titanium implants: A histological study in rabbits. J Periodontol. 2007; 78: 510-8. [CrossRef] [Google Scholar]
  13. Isaksson H, Malkiewicz M, Nowak R, Helminen HJ, Jurvelin JS. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age. Bone. 2012; 47: 1030-8. [CrossRef] [Google Scholar]
  14. Lin DJ, Chuang CC, Lin JHC, Lee JW, Ju CP, Yin HS. Bone formation at the surfaces of low modulus Ti-7.5Mo implants in rabbit femur. Biomater. 2007; 28: 2582-9. [CrossRef] [Google Scholar]
  15. Yamaji T, Ando K, Wolf S, Augat P, Claes L. The effect of micromovement on callus formation. J Orthop Sci. 2001; 6: 571-5. [CrossRef] [Google Scholar]
  16. Claes L, Augat P, Sugar G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997; 15: 577-84. [CrossRef] [Google Scholar]
  17. Uhthoff HK, Bardos DI, Kiar ML. The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. J Bone Jt Surg. 1981; 63-B: 427-34. [CrossRef] [Google Scholar]
  18. Uhthoff HK, Poitras P, Backman DS. Internal plate fixation of fractures: Short history and recent development. J Orthop Sci. 2006; 11: 118-26. [CrossRef] [Google Scholar]
  19. Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system. Bone. 2002; 31: 479-87. [CrossRef] [Google Scholar]
  20. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y. Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J. Bone Min. Res. 2013; 28: 1170-9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.