Open Access
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
Article Number 04005
Number of page(s) 13
Section Aerospace Applications
Published online 12 October 2020
  1. M.R. Bache, A review of dwell sensitive fatigue in titanium alloys : the role of microstructure, texture and operating conditions, Int. J. Fatigue. 25 (2003) 1079-1087. doi:10.1016/S0142-1123(03)00145-2. [CrossRef] [Google Scholar]
  2. M.R. Bache, W.J. Evans, H.M. Davies, Electron back scattered diffraction (EBSD) analysis of quasi-cleavage and hydrogen induced fractures under cyclic and dwell loading in titanium alloys, J. Mater. Sci. (1997). doi:10.1023/A:1018624801310. [Google Scholar]
  3. W.J. Evans, Optimising mechanical properties in alpha + beta titanium alloys, Mater. Sci. Eng. A. 243 (1998) 89-96. [CrossRef] [Google Scholar]
  4. Z. Zhang, M.A. Cuddihy, F.P.E. Dunne, On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue, Proc. R. Soc. A Math. Phys. Eng. Sci. 471 (2015) 20150214. doi:10.1098/rspa.2015.0214. [Google Scholar]
  5. T. Neeraj, D.H. Hou, G.S. Daehn, M.J. Mills, Phenomenological and microstructural analysis of room temperature creep in titanium alloys, Acta Mater. 48 (2000) 1225-1238. doi:10.1016/S1359-6454(99)00426-7. [Google Scholar]
  6. A.L. Pilchak, A. Hutson, W.J. Porter, D. Buchanan, R. John, On the Cyclic Fatigue and Dwell Fatigue Crack Growth Response of Ti-6Al-4V, Proc. 13th World Conf. Titan. (2016) 993-998. doi:10.1002/9781119296126.ch169. [Google Scholar]
  7. V. Sinha, M.J. Mills, J.C. Williams, Crystallography of Fracture Facets in a Near-Alpha Titanium Alloy, Metall. Mater. Trans. A. 37 (2015). [Google Scholar]
  8. V. Hasija, S. Ghosh, M.J. Mills, D.S. Joseph, Deformation and creep modeling in polycrystalline Ti-6Al alloys, Acta Mater. 51 (2003) 4533-4549. doi:10.1016/S1359-6454(03)00289-1. [Google Scholar]
  9. F.P.E. Dunne, A. Walker, D. Rugg, A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue, Proc. R. Soc. A. (2007) 1467-1489. doi:10.1098/rspa.2007.1833. [CrossRef] [Google Scholar]
  10. V. Sinha, J.E. Spowart, M.J. Mills, J.C. Williams, Observations on the Faceted Initiation Site in the Dwell-Fatigue Tested Ti-6242 Alloy : Crystallographic Orientation and Size Effects, Metall. Mater. Trans. A. 37 (2006) 1507-1518. [CrossRef] [Google Scholar]
  11. U. N. Gey, P. Bocher, M. Humbert, J. Jilbert, Texture heterogeneities in α p / α s titanium forging analysed by EBSDRelation to fatigue crack propagation, J. Microsc. 233 (2009) 451-459. [CrossRef] [Google Scholar]
  12. Z. Zheng, A. Stapleton, K. Fox, F.P.E. Dunne, Understanding thermal alleviation in cold dwell fatigue in titanium alloys, Int. J. Plast. (2018) 0-1. doi:10.1016/j.ijplas.2018.07.018. [Google Scholar]
  13. V. Chandravanshi, K. Prasad, V. Singh, A. Bhattacharjee, V. Kumar, Effects of a + b phase deformation on microstructure, fatigue and dwell fatigue behavior of a near-alpha titanium alloy, 91 (2016) 100-109. doi:10.1016/j.ijfatigue.2016.05.023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.