Open Access
Issue
MATEC Web Conf.
Volume 317, 2020
7th International BAPT Conference “Power Transmissions 2020”
Article Number 04001
Number of page(s) 7
Section Tribology, Lubrication
DOI https://doi.org/10.1051/matecconf/202031704001
Published online 03 August 2020
  1. Clean Energy Ministerial, (2013). Global EV Outlook, Paris, France. [Google Scholar]
  2. M. Cames, & E. Helmers. Environmental Sciences Europe, 25(1), 15 (2013) [CrossRef] [Google Scholar]
  3. Available in: https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics [Google Scholar]
  4. Xu, X., Dong, P., Liu, Y., & Zhang, H. (2018). Progress in automotive transmission technology. Automotive Innovation, 1(3), 187-210. [CrossRef] [Google Scholar]
  5. Rogkas, N., Vasileiou, G., Tsolakis, E., Spitas, V., & Zalimidis, P. (2019). Fast modelling and simulation of the dynamic behaviour of a wet multidisc clutch during the engagement phase. In MATEC Web of Conferences (Vol. 287, p. 01018). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Zhigang, Z., Xiaohui, S., & Dong, G. (2016). Dynamic temperature rise mechanism and some controlling factors of wet clutch engagement. Mathematical Problems in Engineering, 2016. [Google Scholar]
  7. S., Iqbal; F. Al-Bender; B. Pluymers; W. Desmet. Mathematical model and experimental evaluation of drag torque in disengaged wet clutches. ISRN Tribology 2013, vol. 2013, Article ID 206539, 16 pages. [Google Scholar]
  8. Pan, H., & Zhou, X. (2019, May). Simulation Research on the Drag Torque of Disengaged Wet Clutches. In 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR) (pp. 44-48). IEEE. [CrossRef] [Google Scholar]
  9. Zhao, J., Ma, B., & Li, H. (2013, July). Investigation of thermoelastic instabilities of wet clutches. In 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM) (pp. 69-72). IEEE. [CrossRef] [Google Scholar]
  10. AJen, T.C., & Nemecek, D.J. (2008). Thermal analysis of a wet-disk clutch subjected to a constant energy engagement. International Journal of Heat and Mass Transfer, 51(7-8), 1757-1769. [CrossRef] [Google Scholar]
  11. Tatara, R.A., & Payvar, P. (2002). Multiple engagement wet clutch heat transfer model. Numerical Heat Transfer: Part A: Applications, 42(3), 215-231. [CrossRef] [Google Scholar]
  12. Neupert, T., & Bartel, D. (2019). High-resolution 3D CFD multiphase simulation of the flow and the drag torque of wet clutch discs considering free surfaces. Tribology International, 129, 283-296. [CrossRef] [Google Scholar]
  13. Zhang, L., Wei, C., Hu, J., & Hu, Q. (2019). Influences of lubrication flow rates on critical speed of rub-impact at high circumferential velocities in No-Load multi-plate wet clutch. Tribology International, 140, 105847. [CrossRef] [Google Scholar]
  14. Hu, J., Hou, S., & Wei, C. (2018). Drag torque modeling at high circumferential speed in open wet clutches considering plate wobble and mechanical contact. Tribology International, 124, 102-116. [CrossRef] [Google Scholar]
  15. Pahlovy, S.A., Mahmud, S.F., Kubota, M., Ogawa, M., & Takakura, N. (2016). Prediction of drag torque in a disengaged wet clutch of automatic transmission by analytical modeling. Tribology Online, 11(2), 121-129. [CrossRef] [Google Scholar]
  16. Jibin, H., Zengxiong, P., & Chao, W. (2012). Experimental research on drag torque for single-plate wet clutch. Journal of tribology, 134(1). [CrossRef] [Google Scholar]
  17. Fujii, Y.; Kapas, N.; Tseng, J. Clutch Wet in Encyclopedia of Automotive Engineering, John Wiley & Sons, New York, 2014, pp .1-15. [Google Scholar]
  18. Huang, J., Wei, J., & Qiu, M. (2012). Laminar flow in the gap between two rotating parallel frictional plates in hydro-viscous drive. Chinese Journal of Mechanical Engineering, 25(1), 144-152. [CrossRef] [Google Scholar]
  19. Rogkas, N., Vakouftsis, C., Vasileiou, G., Manopoulos, C., & Spitas, V. (2020). Nondimensional Characterization of the Operational Envelope of a Wet Friction Clutch. Computation, 8(1), 21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.