Open Access
MATEC Web Conf.
Volume 317, 2020
7th International BAPT Conference “Power Transmissions 2020”
Article Number 01003
Number of page(s) 6
Section Design, Analysis, Simulation and Optimization
Published online 03 August 2020
  1. A. Hughes, ELECTRIC MOTORS AND DRIVES. 1990. [Google Scholar]
  2. T. Verstraten, G. Mathijssen, R. Furnémont, B. Vanderborght, and D. Lefeber, “Modeling and design of geared DC motors for energy efficiency: Comparison between theory and experiments,” Mechatronics, vol. 30, pp. 198-213, 2015, doi: 10.1016/j.mechatronics.2015.07.004. [CrossRef] [Google Scholar]
  3. S. Seok, A. Wang, M.Y. Chuah, D. Otten, J. Lang, and S. Kim, “Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 3307-3312, 2013, doi: 10.1109/ICRA.2013.6631038. [Google Scholar]
  4. G. Carbone, L. Mangialardi, and G. Mantriota, “A comparison of the performances of full and half toroidal traction drives,” Mechanism and Machine Theory, vol. 39, no. 9, pp. 921-942, 2004, doi: 10.1016/j.mechmachtheory.2004.04.003. [CrossRef] [Google Scholar]
  5. M. Nakano, H. Kumura, J. Sugihara, H. Mori, and N. Maruyama, “Development of a large torque capacity half-toroidal CVT,” SAE Technical Papers, vol. 2000, no. 724, 2000, doi: 10.4271/2000-01-0825. [Google Scholar]
  6. J. Kim, F.C. Park, Y. Park, and M. Shizuo, “Design and analysis of a spherical continuously variable transmission,” Journal of Mechanical Design, Transactions of the ASME, vol. 124, no. 1, pp. 21-29, 2002, doi: 10.1115/1.1436487. [CrossRef] [Google Scholar]
  7. C. Everarts, B. Dehez, and R. Ronsse, “Novel infinitely Variable Transmission allowing efficient transmission ratio variations at rest,” IEEE International Conference on Intelligent Robots and Systems, vol. 2015-Decem, pp. 5844-5849, 2015, doi: 10.1109/IROS.2015.7354207. [Google Scholar]
  8. A.S. Kembaum, M. Kitchell, and M. Crittenden, “An ultra-compact infinitely variable transmission for robotics,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 1800-1807, 2017, doi: 10.1109/ICRA.2017.7989212. [Google Scholar]
  9. N.G. Park, J.H. Ryu, H.W. Lee, Y.H. Jeon, and N. Zhang, “Development of the Inner Spherical CVT for a motorcycle,” International Journal of Automotive Technology, vol. 10, no. 3, pp. 341-346, Jun. 2009, doi: 10.1007/s12239-009-0039-8. [CrossRef] [Google Scholar]
  10. H. Ghariblu, A. Behroozirad, and A. Madandar, “Traction and Efficiency Performance of Ball Type CVTs,” International Journal of Automotive Engineering, vol. 4, no. 2, pp. 738-748, 2014. [Google Scholar]
  11. N. Srivastava and I. Haque, “A review on belt and chain continuously variable transmissions (CVT): Dynamics and control,” Mechanism and Machine Theory, vol. 44, no. 1, pp. 19-41, 2009, doi: 10.1016/j.mechmachtheory.2008.06.007. [CrossRef] [Google Scholar]
  12. M. Tomaselli, F. Bottiglione, P. Lino, and G. Carbone, “NuVinci drive: Modeling and performance analysis,” Mechanism and Machine Theory, vol. 150, p. 103877, 2020, doi: 7. [CrossRef] [Google Scholar]
  13. T. Verstraten et al., “Modeling and design of an energy-efficient dual-motor actuation unit with a planetary differential and holding brakes,” Mechatronics, vol. 49, no. December 2017, pp. 134-148, 2018, doi: 10.1016/j.mechatronics.2017.12.005. [CrossRef] [Google Scholar]
  14. D. Rabindran and D. Tesar, “Parametric design and power-flow analysis of parallel force/velocity actuators,” Journal of Mechanisms and Robotics, vol. 1, no. 1, pp. 1-10, 2009, doi: 10.1115/1.2959100. [CrossRef] [Google Scholar]
  15. A. Girard and H.H. Asada, “A two-speed actuator for robotics with fast seamless gear shifting,” IEEE International Conference on Intelligent Robots and Systems, vol. 2015-Decem, pp. 4704-4711, 2015, doi: 10.1109/IROS.2015.7354047. [Google Scholar]
  16. P. López-García, S. Crispel, T. Verstraten, and E. Saerens, “Wolfrom Gearboxes for Lightweight , Human-Centered Robotics,” no. September, 2019. [Google Scholar]
  17. A. Kapelevich, “High gear ratio epicyclic drives analysis,” American Gear Manufacturers Association Fall Technical Meeting 2013, no. June, pp. 61-72, 2013. [Google Scholar]
  18. S. Crispel et al., “Introducing Compound Planetary Gears (C-PGTs): A Compact Way to Achieve High Gear Ratios for Wearable Robots,” in International Symposium on Wearable Robotics, vol. 22, no. 337596, Springer, 2019, pp. 485-489. [Google Scholar]
  19. T. Iino et al., “Research of hydrostatic CVT for passenger vehicles,” JSAE Review, vol. 24, no. 2, pp. 227-230, 2003, doi: 10.1016/S0389-4304(03)0000 2 -X. [CrossRef] [Google Scholar]
  20. C. Zhu, H. Liu, J. Tian, Q. Xiao, and X. Du, “Experimental investigation on the efficiency of the pulley-drive CVT,” International Journal of Automotive Technology, vol. 11, no. 2, pp. 257-261, Apr. 2010, doi: 10.1007/s12239-010-0032-2. [CrossRef] [Google Scholar]
  21. Nissan USA, “Nissan’s XTRONIC Continuously Variable Transmission (CVT),” 2017. [Google Scholar]
  22. D.A. Winter, “Biomechanical motor patterns in normal walking,” Journal of Motor Behavior, vol. 15, no. 4, pp. 302-330, 1983, doi: 10.1080/00222895.1983.10735302. [CrossRef] [PubMed] [Google Scholar]
  23. T. Verstraten, R. Furnémont, P. López-García, D. Rodriguez-Cianca, B. Vanderborght, and D. Lefeber, “Kinematically redundant actuators, a solution for conflicting torque–speed requirements,” The International Journal of Robotics Research, vol. 38, no. 5, pp. 612-629, 2019, doi: 10.1177/0278364919826382. [CrossRef] [Google Scholar]
  24. D. Yu and N. Beachley, “On the Mechanical Efficiency of Differential Gearing,” Journal of Mechanisms, Transmissions, and Automation in Design, vol. 107, no. 1, pp. 61-67, 1985, doi: 10.1115/1.3258696. [CrossRef] [Google Scholar]
  25. M. de Carlo and G. Mantriota, “Electric vehicles with two motors combined via planetary gear train,” Mechanism and Machine Theory, vol. 148, p. 103789, 2020, doi: 10.1016/j.mechmachtheory.2020.103789. [CrossRef] [Google Scholar]
  26. T. Verstraten, R. Furnémont, P. López-García, S. Crispel, B. Vanderborght, and D. Lefeber, “A series elastic dual-motor actuator concept for wearable robotics,” Biosystems and Biorobotics, vol. 22, pp. 165-169, 2019, doi: 10.1007/978-3-030-01887-0_32. [CrossRef] [Google Scholar]
  27. J.B. Morrell and J.K. Salisbury, “Parallel-coupled micro-macro actuators,” International Journal of Robotics Research, vol. 17, no. 7, pp. 773-791, Jul. 1998, doi: 10.1177/027836499801700707. [CrossRef] [Google Scholar]
  28. G. Mathijssen et al., “+SPEA introduction: Drastic actuator energy requirement reduction by symbiosis of parallel motors, springs and locking mechanisms,” Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, pp. 676-681, 2016, doi: 10.1109/ICRA.2016.7487193. [Google Scholar]
  29. J.M. Miller, “Hybrid electric vehicle propulsion system architectures of the e-CVT type,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 756-767, 2006, doi: 10.1109/tpel.2006.872372. [CrossRef] [Google Scholar]
  30. J. Schultz, G. Mathijssen, B. Vanderborght, and A. Bicchi, “A selective recruitment strategy for exploiting muscle-like actuator impedance properties,” IEEE International Conference on Intelligent Robots and Systems, vol. 2015-Decem, pp. 2231-2237, 2015, doi: 10.1109/IROS.2015.7353676. [Google Scholar]
  31. H.W. Müller, Epicyclic drive trains: Analysis, synthesis, and applications. Wayne State University Press, 1982. [Google Scholar]
  32. G. Mathijssen et al., “Study on electric energy consumed in intermittent series–parallel elastic actuators (iSPEA),” Bioinspiration & Biomimetics, vol. 12, no. 3, p. 036008, Apr. 2017, doi: 10.1088/1748-3190/aa664d. [CrossRef] [Google Scholar]
  33. Quora, “Which Transmission is better, an automatic or a CVT?” [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.