Open Access
Issue
MATEC Web Conf.
Volume 314, 2020
International Cross-Industry Safety Conference (ICSC) – International Symposium on Aircraft Technology, MRO and Operations (ISATECH) (ICSC-ISATECH 2019)
Article Number 02001
Number of page(s) 11
Section International Symposium on Aircraft Technology, MRO and Operations
DOI https://doi.org/10.1051/matecconf/202031402001
Published online 29 May 2020
  1. Qiang C, Ye L, Airline energy efficiency measures considering carbonabatement: A new strategic framework, Transportation Research Part D 49 246-258,(2016) [Google Scholar]
  2. IATA, 2014. <http://www.iata.org/Pages/default.aspx>. [Google Scholar]
  3. Lee JJ. Can we accelerate the improvement of energy efficiency in aircraft systems? Energ Convers Manage; 51(1):189-96, (2010) [Google Scholar]
  4. Abbas A, de Vicente J, Valero E. Aerodynamic technologies to improve aircraft performance. Aerosp Sci Technol; 28(1):100-32, (2013). [CrossRef] [Google Scholar]
  5. Ponater M, Pechtl S, Sausen R, Schumann U, Huttig G. Potential of the cryoplane technology to reduce aircraft climate impact: a state-of-the-art assessment. Atmos Environ 2006;40(36):6928-44. [CrossRef] [Google Scholar]
  6. Bruno D C, Davide D F, Nicola C, Dario P, Comparative specific energy consumption between airtransport and high-speed rail transport: A practical assessment, Transportation Research Part D 52 227-243, (2017). [Google Scholar]
  7. Adler, N., Pels, E., Nash, C., 2010. High-speed rail and air transport competition: game engineering as tool for cost-benefit analysis. Transp. Res. Part B 44, 812-833, (2010). [CrossRef] [Google Scholar]
  8. Hao, L., Hansen, M., Ryerson, M.S., Fueling for contingencies: the hidden cost of unpredictability in the air transportation system. Transport. Res. Part D: Transport Environ. 44, 199-210, (2016). [CrossRef] [Google Scholar]
  9. Jamin, S., Schäfer, A., Ben-Akiva, M.E., Waitz, I.A.,. Aviation emissions and abatement policies in the United States: a city-pair analysis. Transport. Res. Part D: Transport Environ. 9 (4).295-317, (2004). [CrossRef] [Google Scholar]
  10. Yang, H., Zhang, A.,. Effects of high-speed rail and air transport competition on prices, profits and welfare. Transp. Res. Part B 46 (10), 1322-1333, (2012). [CrossRef] [Google Scholar]
  11. Sahin, O., Turan, O.,. Evaluation of aircraft descent profile. Energy Procedia 95, 308–313, (2016). [Google Scholar]
  12. Meric, O.S., Optimum arrival routes for flight efficiency. J. Power Energy Eng. 3, 449–452, (2015). [CrossRef] [Google Scholar]
  13. Aydin, H., Turan, O., Karakoc, T.H., Midilli, A., Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy 58, 550-560, (2013). [CrossRef] [Google Scholar]
  14. Atilgan, R., Turan, O., Altuntas, O., Aydin, H., Synylo, K., Environmental impact assessment of a turboprop engine with the aid of exergy. Energy 58, 664-671, (2013). [CrossRef] [Google Scholar]
  15. Turan, O., Aydin, H.,. Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine. Energy 74, 638-650, (2014). [CrossRef] [Google Scholar]
  16. Turan, O.,. Effect of reference altitudes for a turbofan engine with the aid of specificexergy based method. Int. J. Exergy 11, 252-270, (2012). [CrossRef] [Google Scholar]
  17. Turan, O., An exergy way to quantify sustainability metrics for a high bypass turbofan engine. Energy 86, 722-736, (2015). [CrossRef] [Google Scholar]
  18. Aydin H, Turan O, Karakoc TH, Midilli A. Sustainability assessment of PW6000 turbofan engine: an exergetic approach. International Journal of Exergy 14(3): 388-412, (2014). [CrossRef] [Google Scholar]
  19. Aydin H, Turan O, Karakoc TH, Midilli A. Exergetic sustainability indicators as a tool in commercial aircraft: a case study for a turbofan engine. Int J Green Energy, 12: 2840, (2015) [CrossRef] [Google Scholar]
  20. Baklacioglu T, Turan O, Aydin H. Metaheuristic approach for an artificial neural network: Exergetic sustainability and environmental effect of a business aircraft, Transport. Res. Part D: Transport Environ, 63 445-465, (2018). [CrossRef] [Google Scholar]
  21. Aydin H, Turan O. Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications. Energy; 115 (1): 914-23, (2016). [CrossRef] [Google Scholar]
  22. Cilgin, ME, Turan, O. Entropy generation calculation of a turbofan engine: a case of CFM56-7B, Int J Turbo Jet Eng; 58: 664-71, (2017). [Google Scholar]
  23. Turan, O., Aydin, H.,. Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine. Energy 74, 638-650, (2014). [CrossRef] [Google Scholar]
  24. Turan, O., Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy 46, 51-61, (2012). [CrossRef] [Google Scholar]
  25. Baklacioglu T, Turan O, Aydin H. Metaheuristics Optimized Machine Learning Modelling of Environmental Exergo-Emissions for an Aero-Engine, Int J Turbo Jet Eng; https://doi.org/10.1515/tjj-2019-0037, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.