Open Access
MATEC Web Conf.
Volume 312, 2020
9th International Conference on Engineering, Project, and Production Management (EPPM2018)
Article Number 01006
Number of page(s) 10
Section Theories and Applications of Engineering Management
Published online 03 April 2020
  1. A. Kononiuk, A. Gudanowska, (eds), Kierunki rozwoju nanotechnologii w województwie podlaskim. Mapy. Marszruty. Trendy, Oficyna Wydawnicza Politechniki Białostockiej, Białystok (2013) [Google Scholar]
  2. J. Nazarko, Regionalny foresight gospodarczy. Scenariusze rozwoju innowacyjności mazowieckich przedsiębiorstw, ZPWiM, Warszawa (2013) [Google Scholar]
  3. L. Nazarko, Future-Oriented Technology Assessment, Procedia Engineering, 182, 504-509 (2017) [CrossRef] [Google Scholar]
  4. A.L. Porter, Technology Assessment, Impact Assessment, 13(2), 135-151 (1995) [CrossRef] [Google Scholar]
  5. M. Aaltonen, Evaluation and organization of Futures Research Methodology –V 3.0 [online] [11.07.2018] (2009) [Google Scholar]
  6. A. Magruk, Innovative classification of technology foresight methods, Technological and Economic Development of Economy, 17(4), 700-715 (2011) [CrossRef] [Google Scholar]
  7. K. Halicka, Innovative classification of methods of the Future-oriented Technology Analysis, Technological and Economic Development of Economy, 22(4), 574-597, (2016) [CrossRef] [Google Scholar]
  8. R. Popper, How are foresight methods selected?, Foresight, 10(6), 62-89 (2008) [CrossRef] [Google Scholar]
  9. C. Cagnin, A. Havas, O. Saritas, Future-oriented technology analysis: Its potential to address disruptive transformations, Technological Forecasting & Social Change, 80(3), 379-385 (2013) [CrossRef] [Google Scholar]
  10. A. Kononiuk, A. Sacio-Szymańska, J. Gáspár, How do companies envisage the future? Functional foresight approaches, Engineering Management in Production and Services, 9(4), 21-33 (2017) [CrossRef] [Google Scholar]
  11. N. Li, K. Chen, M. Kou, Technology foresight in China: Academic studies, governmental practices and policy applications, Technological Forecasting and Social Change, 119, 246-255 (2017) [CrossRef] [Google Scholar]
  12. L. Proskuryakova, Energy technology foresight in emerging economies, Technological Forecasting and Social Change, 119, 205-210 (2017) [CrossRef] [Google Scholar]
  13. B. Förster, Technology foresight for sustainable production in the German automotive supplier industry, Technological Forecasting and Social Change, 92, 237-248 (2015) [CrossRef] [Google Scholar]
  14. M. Choi, H.-L. Choi, H. Yang, Procedural characteristics of the 4th Korean technology foresight, Foresight, 16(3), 198-209 (2014) [CrossRef] [Google Scholar]
  15. D.S. Kwon, J.H. Cho, S.Y. Sohn, Comparison of technology efficiency for CO2 emissions reduction among European countries based on DEA with decomposed factors, Journal of Cleaner Production, 151, 109-120 (2017) [CrossRef] [Google Scholar]
  16. E. Chodakowska, J. Nazarko, Environmental DEA Method for Assessing Productivity of European Countries, Technological and Economic Development of Economy, 23(4), 589-607 (2017) [CrossRef] [Google Scholar]
  17. T. Sueyoshi, M. Goto, Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors, Energy Economics, 46, 295-307 (2014) [CrossRef] [Google Scholar]
  18. J.-L. Fan, X. Zhang, J. Zhang, S. Peng, Efficiency evaluation of CO2 utilization technologies in China: A super-efficiency DEA analysis based on expert survey, Journal of CO2 Utilization, 11, 54-62 (2015) [CrossRef] [Google Scholar]
  19. A. Shabani, R.F. Saen, A new data envelopment analysis (DEA) model to select eco-efficient technologies in the presence of undesirable outputs, Clean Technologies and Environmental Policy, 16(3), 513-525 (2014) [CrossRef] [Google Scholar]
  20. Y. Liu., C. Sun, S. Xu, Eco-Efficiency Assessment of Water Systems in China, Water Resource Management, 27(14), 4927-4939 (2013) [CrossRef] [Google Scholar]
  21. S.K. Lee, G. Mogi, K.S. Hui, A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices, Renewable and Sustainable Energy Reviews, 21, 347-355 (2013) [CrossRef] [Google Scholar]
  22. H. Lee, C. Lee, H. Seol, Y. Park, On the R&D priority setting in technology foresight: a DEA and ANP approach, International Journal of Innovation and Technology Management, 5(2), 201-219 (2008) [CrossRef] [Google Scholar]
  23. P. Yu, J.H. Lee, A hybrid approach using two-level SOM and combined AHP rating and AHP/DEA-AR method for selecting optimal promising emerging technology, Expert System with Applications, 40, 300-314 (2013) [CrossRef] [Google Scholar]
  24. G.R. Amin, A. Emrouznejad, A new DEA model for technology selection in the presence of ordinal data, International Journal of Advanced Manufacturing Technology, 65, 1567-1572 (2013) [CrossRef] [Google Scholar]
  25. E.E. Karsak, S.S. Ahiska, Practical common weight multicriteria decision-making approach with an improved discriminating power for technology selection, International Journal of Production Research, 43(8), 1537-1554 (2005) [CrossRef] [Google Scholar]
  26. A. Alinezhad, A. Makui, R. Kiani Mavi, M. Zohrehbandian, An MCDM-DEA approach for technology selection, Journal of Industrial Engineering International, 7(12), 32-38 (2011) [Google Scholar]
  27. M. Khouja, The use of data envelopment analysis for technology selection, Computers & Industrial Engineering, 28(1), 123-132 (1995) [CrossRef] [Google Scholar]
  28. R.F. Saen, Technology selection in the presence of imprecise data. weight restrictions. and nondiscretionary factors, The International Journal of Advanced Manufacturing Technology, 41(7-8), 827-838 (2009) [CrossRef] [Google Scholar]
  29. K. Klincewicz, A. Manikowski, Ocena. rankingowanie i selekcja technologii, Wydawnictwo Naukowe Wydziału Zarządzania Uniwersytetu Warszawskiego, Warszawa (2013) [CrossRef] [Google Scholar]
  30. K. Klusacek, Selection of research priorities – method of critical technologies, Technology Centre of the CAS, [online] (2003) [13.07.2018] [Google Scholar]
  31. J. Nazarko, A. Magruk (eds), Kluczowe Nanotechnologie w gospodarce Podlasia, Oficyna Wydawnicza Politechniki Białostockiej, Białystok (2013) [Google Scholar]
  32. N. Adler, B. Golany, Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe, European Journal of Operational Research, 132(2), 260-273 (2001) [CrossRef] [Google Scholar]
  33. N. Adler, B. Golany, Including Principal Component Weights to improve discrimination in Data Envelopment Analysis, Journal of the Operational Research Society, 53(9), 985-991 (2002) [CrossRef] [Google Scholar]
  34. K. Revett, Diagnostic Feature Analysis of a Dobutamine Stress Echocardiography Dataset Using Rough Sets, In: J.F. Peters, A. Skowron, H. Rybiński, eds, Transactions on Rough Sets IX, Springer, 318-327 (2008) [CrossRef] [Google Scholar]
  35. H.-H. Yang, Ch.-L. Wu, Rough sets to help medical diagnosis – Evidence from a Taiwan’s clinic, Expert Systems with Applications, 36, 9293-9298 (2009) [CrossRef] [Google Scholar]
  36. A.I. Dimitras, R. Slowinski, R. Susmaga, C. Zopounidis, Business failure prediction using rough sets, European Journal of Operational Research, 114, 263-280 (1999) [CrossRef] [Google Scholar]
  37. R.W. Swiniarski, A. Skowron, Rough set methods in feature selection and recognition, Pattern Recognition Letters, 24(6), 833-849 (2003) [CrossRef] [Google Scholar]
  38. E. Chodakowska, Rough and Fuzzy DEA in the Process of Prospective Technology Analysis, In: A. Emrouznejad, and E. Thanassoulis (eds), Data Envelopment Analysis and Performance Measurement: Recent Developments: Proceedings of the DEA40: International Conference of Data Envelopment Analysis, April 2018, Aston Business School, Birmingham, UK (2018) [Google Scholar]
  39. Z. Pawlak, Rough sets, International Journal of Information and Computer Science, 11, 344-356 (1982) [Google Scholar]
  40. Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, 177, 3-27 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  41. A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision-making units, European Journal of Operational Research, 2(6), 429-444 (1978) [CrossRef] [Google Scholar]
  42. P. Andersen, N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39(10), 1261-1264 (1993) [CrossRef] [Google Scholar]
  43. A. Azadeh, S.M. Alem, A flexible deterministic. stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis, Expert Systems with Applications, 37(12), 7438-7448 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.