Open Access
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
Article Number 04013
Number of page(s) 8
Section System Design and Optimization
Published online 04 March 2020
  1. Brinckmann E. ESA hardware for plant research on the International Space Station. Advances in Space Research. 36 (7) (2005) 1162–1166. [Google Scholar]
  2. Barmin I, Egorov A, Senchenkov A, Filatov I, Bryukhanov N, Tsvetkov V. Utilization of the “Progress” transport spacecraft as an element of the International Space Station for experiments under mu g-conditions. First International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology. 454 (2000) 1039–1044. [Google Scholar]
  3. NASA. Interfacial behaviors and Heat transfer characteristics in Boiling Two-Phase Flow. [Google Scholar]
  4. Ishioka N, Suzuki H, Asashima M, Kamisaka S, Mogami Y, et al. Development and verification of hardware for life science experiments in the Japanese experiment module “Kibo” on the International Space Station. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology 11 (1) (2004) 81–91. [Google Scholar]
  5. Larson M, Croonquist A, Dick GJ, Liu YM. The science capability of the Low Temperature Microgravity Physics Facility. Physica B-condensed Matter 329 (2003) 1588–1589. [CrossRef] [Google Scholar]
  6. Quick connects. [Google Scholar]
  7. S.H. Lee, I. Mudawar, M.M. Hasan, Thermal Analysis of Hybrid Single-Phase, Two-Phase and Heat Pump Thermal Control System (Tcs) for Future Spacecraft, Applied Thermal Engineering, 100 (2016) 190–214. [Google Scholar]
  8. M.T. Lebon, C.F. Hammer, J. Kim, Gravity Effects on Subcooled Flow Boiling Heat Transfer, International Journal of Heat and Mass Transfer, 128 (2019) 700–714. [CrossRef] [Google Scholar]
  9. H. Ohta, Microgravity Heat Transfer in Flow Boiling, Advances in heat transfer, 37 (2003) 1–76 [CrossRef] [Google Scholar]
  10. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z. Ren, G. Chen, Perspectives on Thermoelectrics: From Fundamentals to Device Applications, Energy and Environmental Science, 5 (2012) 5147–5162. [CrossRef] [Google Scholar]
  11. E. Alleno, N. Lamquembe, R. Cardosogil, M. Ikeda, F. Widder, O. Rouleau, C. Godart, Y. Grin, S. Paschen, A Thermoelectric Generator Based on an N-Type Clathrate and a P-Type Skutterudite Unicouple, Physica Status Solidi A-applications and Materials Science, 211 (2014) 1293–1300. [CrossRef] [Google Scholar]
  12. N.P. Semena, The Features of Application of Thermoelectric Converters in Spacecraft Systems of Temperature Control, Thermophysics and Aeromechanics, 20 (2013) 211–222. [CrossRef] [Google Scholar]
  13. K. Gaurav, S.K. Pandey, Efficiency Calculation of a Thermoelectric Generator for Investigating the Applicability of Various Thermoelectric Materials, Journal of Renewable and Sustainable Energy, 9 (2017) 014701. [CrossRef] [Google Scholar]
  14. T.S. Topham, G.E. Bingham, H. Latvakoski, I. Podolski, V.S. Sychev, A. Burdakin, Observational Study: Microgravity Testing of a Phase-Change Reference on the International Space Station, npj Microgravity, 1 (2015) 15009. [CrossRef] [Google Scholar]
  15. J.A. Morales de los Rios, E. Joven, L. del Peral, M. Reyes, J. Licandro, M.D. Rodriguez Frias, The Infrared Camera Prototype Characterization for the Jem-Euso Space Mission, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 749 (2014) 74–83. [Google Scholar]
  16. G. Bale, A. Holland, P. Seller, B. Lowe, Cooled Cdznte Detectors for X-Ray Astronomy, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 436 (1999) 150–154. [Google Scholar]
  17. J.H. Miernik, B.H. Shah, C.F. Mcgriff, Waste Water Processing Technology for Space Station Freedom - Comparative Test Data Analysis, in: international conference on evolvable systems, 1991, pp. 229–240. [Google Scholar]
  18. Bugby D, Zimbeck W, Kroliczek E. Thermal Management Architecture for Future Responsive Spacecraft. Space, Propulsion & Energy Sciences International Forum Spesif 1103 (2009) 30–38. [CrossRef] [Google Scholar]
  19. Zhao J, Zhu HL, Qiu HB, Zhuang J, Yu HF. Numerical Simulation and Experimental Research on Multistage Thermoelectric Refrigeration. Chinese Journal of Refrigeration Technology 35 (4) (2015) 17–21. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.