Open Access
Issue |
MATEC Web Conf.
Volume 309, 2020
2019 International Conference on Computer Science Communication and Network Security (CSCNS2019)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 7 | |
Section | Smart Algorithms and Recognition | |
DOI | https://doi.org/10.1051/matecconf/202030903026 | |
Published online | 04 March 2020 |
- Roman R, Lopez J, Mambo M. Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges[J]. Future Generation Computer Systems, 2018, 78: 680–698. [CrossRef] [Google Scholar]
- Li H, Ota K, Dong M. Learning IoT in edge: Deep learning for the Internet of Things with edge computing[J]. IEEE Network, 2018, 32(1): 96–101. [CrossRef] [Google Scholar]
- Chen M, Hao Y. Task offloading for mobile edge computing in software defined ultra- dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587–597. [CrossRef] [Google Scholar]
- Tran T X, Pompili D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2018, 68(1): 856–868. [Google Scholar]
- Haifeng Lu, Chunhua Gu, Fei Luo, Weichao Ding, Xinping Liu, Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning,Future Generation Computer Systems, 2019 [Google Scholar]
- Lyu X, Tian H, Ni W, et al. Energy-efficient admission of delay-sensitive tasks for mobile edge computing[J]. IEEE Transactions on Communications, 2018, 66(6): 2603–2616. [CrossRef] [Google Scholar]
- Bi S, Zhang Y J. Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 4177–4190. [CrossRef] [Google Scholar]
- Yang C, Liu Y, Chen X, et al. Efficient mobility-aware task offloading for vehicular edge computing networks[J]. IEEE Access, 2019, 7: 26652–26664. [CrossRef] [Google Scholar]
- Gupta H, Vahid Dastjerdi A, Ghosh S K, et al. iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments[J]. Software: Practice and Experience, 2017, 47(9): 1275–1296. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.